成人小说亚洲一区二区三区,亚洲国产精品一区二区三区,国产精品成人精品久久久,久久综合一区二区三区,精品无码av一区二区,国产一级a毛一级a看免费视频,欧洲uv免费在线区一二区,亚洲国产欧美中日韩成人综合视频,国产熟女一区二区三区五月婷小说,亚洲一区波多野结衣在线

立即打開
我的應(yīng)用不懂我

我的應(yīng)用不懂我

Daniel Roberts 2013-04-07
眼下,推薦引擎方興未艾,覆蓋了吃喝玩樂等生活的方方面面,它們背后的基礎(chǔ)都是時下熱門的大數(shù)據(jù)概念。但是,從目前的使用體驗來看,它們還比不上人肉推薦引擎,也就是我們的家人和朋友們。這些人更了解我們的口味和愛好,而所謂的推薦引擎則還有很長的路要走。

????隨著年紀(jì)漸長,工作越來越忙,我們越來越難主動發(fā)現(xiàn)生活中美好的事物,隨之也涌現(xiàn)出了很多自稱了解每個用戶的需求,能夠幫你推薦喜歡的音樂、餐廳或雜志文章的應(yīng)用軟件。

????最近我和我大學(xué)的好朋友去了一趟華盛頓特區(qū),這位朋友現(xiàn)在是一名廚師。說起來有點不好意思,這還是我第一次在八年級以后去華盛頓。我對這個城市一無所知,因此對我的幫助越多越好。我把筆記本電腦放在了家里,整整兩天時間完全依賴移動設(shè)備,也就是我的iPhone和iPad(我們還第一次嘗試了Airbnb)。

????在選餐廳的問題上,我依靠的是Ness。今年年方27歲的科里?里斯于2009年與人共同創(chuàng)辦了Ness計算公司。這款應(yīng)用有一個“相似度分?jǐn)?shù)”,可以表示出你有多大的可能會喜歡某個推薦。里斯表示,Ness最終可能會成為一個個性化的搜索引擎,但是現(xiàn)在這個應(yīng)用主要還是針對餐廳和咖啡廳。他不無自豪地說,用戶們總是告訴他:“我覺得Ness很懂我?!毙侣勯喿x器Zite的CEO、34歲的馬克?約翰遜也說,Zite的用戶們都表示:“Zite很懂我?!笨萍冀缰杏胁簧倬⑷瞬哦荚诟阃扑]引擎,這一點也不值得奇怪。里斯說:“我認(rèn)為,直接輸入‘我應(yīng)該和朋友在哪吃飯’或‘附近有什么很酷的商店’,這個概念已經(jīng)開始在移動設(shè)備上成為現(xiàn)實了,就算是在戶外也可以實現(xiàn)?!?/p>

????它的工作原理是什么呢?當(dāng)你第一次打開Ness,它要讓你按照五個檔次,給當(dāng)前位置附近的10家餐廳打分。我去華盛頓前,在紐約的曼哈頓完成了打分的過程,不過我發(fā)現(xiàn)這個過程是有缺陷的,因為它沒有拉開菜系的檔次。比如它把米其林三星餐廳老板丹尼爾?布魯?shù)碌腄BGB高檔餐廳和漢堡王(Burger King)放在同一個屏幕里讓人打分,同時這些餐廳里還包括了星巴克(Starbucks)。同時,在你給酒吧打分的時候,它列出的有些酒吧里也提供食物。比如說我喜歡一家叫Brother Jimmy’s的酒吧,是因為我喜歡它有往啤酒杯里扔乒乓球的游戲。他們的雞翅還有可以,不過如果我給打它了四星,Ness會不會開始經(jīng)常向我推薦其它彌漫著兄弟會作風(fēng)的酒吧?不過自從我到了華盛頓之后,Ness的表現(xiàn)要好了一些。根據(jù)我在紐約打的分,它向我推薦了一些地中海風(fēng)情的餐廳,一些中東風(fēng)味,以及幾家我的朋友慕名已久的高端美式餐廳。除了按照你可能喜歡的程度排名之外,Ness還按就餐價格列出了一張排名,好讓你知道該進(jìn)哪一家。同時它也會告訴你,某家餐廳是不是城里第一、第二、第三火爆的這種類型的餐廳。(比如它推薦的José Andrés' Zaytinya就是華盛頓最火爆的地中海風(fēng)味餐廳。)我們最后選擇了一家名叫Central Michel Richard的餐廳(Ness稱我們喜歡它的可能性有82%),我們果然美美地吃了一頓。

????吃完午飯后,我們在通過Airbnb租來的公寓房間里連上了Wi-Fi,然后我花了一點時間在Zite上看雜志,Zite是一款像Flipboard一樣的所謂“智能雜志”應(yīng)用。雖然Flipboard在二者間的名氣更大,但Zite似乎能更好地了解用戶的閱讀習(xí)慣,哪怕你不把它綁定你的社交媒體也是一樣。我已經(jīng)用Zite幾個星期了,而且我發(fā)現(xiàn),我“頂”或“踩”的報道越多,它向我的個人頁面推薦的文章就越符合我的品味。

????As you grow older and busier, it becomes more difficult to make spontaneous discoveries. Or at least that's the theory behind a bevy of so-called predictive apps purporting to know each user well enough to hand them their next favorite song, restaurant, or magazine article.

????I gave these tools a test run on a recent trip to D.C. with my best friend from college, who is now a chef. Embarrassingly, it was my first visit to D.C. since the eighth grade; I knew nothing about the city and needed all the help I could get. I left the laptop at home and went strictly mobile for two days, bringing only my iPhone and iPad. (We also tried Airbnb for the first time.)

????For restaurant ideas, I turned to Ness. Corey Reese, 27, co-founded Ness Computing in 2009. The app produces a "likeness score," a percentage that denotes how likely you are to like a particular recommendation. Reese says that Ness could eventually become a personalized search engine, but for now the venture is focusing on restaurants and cafes. He brags that users keep telling him, "It feels like Ness knows me." Mark Johnson, the 34-year-old CEO of newsreaderZite, also says that his app's users rave: "My Zite knows me." It should come as no surprise that more than a few smart people in tech are working on recommendation engines. "We think your entry point for 'Where should I eat with my friends' or 'What's the cool store nearby' is happening on mobile now," says Reese. "It's happening when you're already out and about."

????How does it work? When you first open Ness it asks you to rate, on a five-star scale, 10 restaurants near your current location. I did this in Manhattan before heading to D.C. and found the process flawed. Because it doesn't distinguish between levels of cuisine, it will ask you to rateDaniel Boulud's pricey DBGB in the same screen as it asks you to rate Burger King (BKW). It also includes Starbucks (SBUX). Similarly, it asks you to rate bars that happen to serve food. Sure, I like Brother Jimmy's -- for playing beer pong. Their wings are okay, but if I give it four stars, will Ness start offering me frat bars regularly?

????Once in D.C., Ness fared better. Based on my NYC ratings, it offered us a Mediterranean place, some Middle Eastern fare, and a few upscale American restaurants my friend already knew about. Ness includes, along with its percentage prediction, a price rating so you know what you're getting into. It'll also tell you if a place is the first, second, or third most popular restaurant of its type in the city. (José Andrés' Zaytinya, which it offered, was the most popular Mediterranean in Washington.) We chose Central Michel Richard (Ness promised an 82%) and enjoyed our meal.

????After lunch, connected to Wi-Fi in the apartment we had rented on Airbnb, I spent some time with Zite, a so-called "intelligent magazine" a la Flipboard. Though Flipboard has been the buzzier of the two, Zite seems to learn its user's reading habits better than Flipboard, even if you choose not to connect it to your social media. I had been using Zite for a few weeks and, indeed, found that the more stories and articles to which I gave thumbs up or down, the better it was getting with the stories it displayed on my personalized front page.

掃描二維碼下載財富APP
欧美黑人疯狂性受XXXXX喷水| 欧美亚洲国产日韩欧美4p| 国产精品无码一本二本三本色| 美女视频黄频A免费高清不卡| 少妇无码太爽了在线播放| 亚洲国内午夜av无码私人影院| 国产AV人人夜夜澡人人爽| 亚洲AV在线无码播放毛片一线天| 秋霞鲁丝片Av无码少妇| 免费一级欧美片在线观看亚| 人妻少妇乱子伦无码视频专区| 国产亚洲第一午夜福利合集| 少妇无码太爽了在线播放| 欧美XXXX做受性欧美88| 亚洲AV日韩AV无码偷拍| 国产蜜桃一区二区三区在线观看 | 国产目拍亚洲精品一区二区| 99久久精品国产综合一区| 国产尤物在线观看不卡| 国产亚洲精品无码不卡| 97亚洲欧美国产中字99| 强开小婷嫩苞又嫩又紧视频| 色欧美亚洲欧美黄色成人| 欧美交A欧美精品喷水| 色橹橹欧美在线观看视频高清| 狠狠躁夜夜躁人人爽天天古典| 乱肉艳妇熟女 岳| 国产成人综合亚洲av第一页| 国产杨幂福利AV在线播放 | aa久久一级一片毛片特色| 产精品毛片久久久久久久A片| 99亚洲精品中文字幕无码不卡| 办公室特殊服务2在线观看| 无码国产激情在线观看| 青青青国产在线观看手机免费| 厨房玩朋友娇妻hd完整版视频| 君岛美绪暴雨夜中文字幕| 日日狠狠久久偷偷色综合0| 国产精品99久久久久久猫咪| 国产精品无码素人福利不卡| 97超碰中文字幕久久|