成人小说亚洲一区二区三区,亚洲国产精品一区二区三区,国产精品成人精品久久久,久久综合一区二区三区,精品无码av一区二区,国产一级a毛一级a看免费视频,欧洲uv免费在线区一二区,亚洲国产欧美中日韩成人综合视频,国产熟女一区二区三区五月婷小说,亚洲一区波多野结衣在线

立即打開
哈佛教授建言:中國(guó)的霧霾到底應(yīng)該怎么治

哈佛教授建言:中國(guó)的霧霾到底應(yīng)該怎么治

Chris Nielsen 2017-01-15
由于工業(yè)排放、煤炭燃燒、汽車尾氣等原因,北京以及多座中國(guó)大城市的空氣污染程度經(jīng)常超過世界衛(wèi)生組織制定的健康標(biāo)準(zhǔn)許多倍。

?

2015年11月15日,兩名中國(guó)女孩戴著口罩在霧霾中眺望故宮。由于工業(yè)排放、煤炭燃燒、汽車尾氣等原因,北京以及多座中國(guó)大城市的空氣污染程度經(jīng)常超過世界衛(wèi)生組織制定的健康標(biāo)準(zhǔn)許多倍。

最近,中國(guó)空氣嚴(yán)重污染的消息又引起了各大媒體的關(guān)注。上周,中國(guó)的霧霾水平再創(chuàng)歷史新高,全國(guó)有32座城市發(fā)布了最高污染警戒級(jí)別的“紅色預(yù)警”。在此之前,僅北京就于去年12月接連發(fā)布了兩次紅色預(yù)警,中小學(xué)、工廠大面積停課停工,半數(shù)車輛限行。

有人可能難以理解中國(guó)的空氣污染問題為何如此頑固,畢竟中國(guó)近年來(lái)的治污力度不可謂不大。2013年,網(wǎng)絡(luò)上甚至冒出了一個(gè)新造的英語(yǔ)詞來(lái)形容北京的嚴(yán)重霧霾——“airpocalypse”,意為“空氣末日”。在民眾的一片焦慮中,中國(guó)政府也出臺(tái)了大手筆的全國(guó)性大氣污染防治方案。隨著老百姓每天查看空氣污染程度預(yù)報(bào)已經(jīng)成為了一種習(xí)慣,“PM2.5”這個(gè)詞也走入了千家萬(wàn)戶。

首先要承認(rèn),2011年以來(lái),中國(guó)在降低污染物排放上的確取得了巨大的成功。而且這還是在國(guó)民經(jīng)濟(jì)持續(xù)保持7%以上的增長(zhǎng)且煤炭使用量保持穩(wěn)定的前提之下。比如二氧化硫的總排放量(主要來(lái)源是工業(yè)和居民燃煤)從2010年的2190萬(wàn)噸下跌到了2014年的1970萬(wàn)噸,與2006年時(shí)的2590萬(wàn)噸相比,可以看出中國(guó)的二氧化硫排放量一直在穩(wěn)步下跌。這主要?dú)w功于中國(guó)對(duì)國(guó)內(nèi)發(fā)電廠采取了強(qiáng)制脫硫措施。而二氧化氮的排放量(主要來(lái)自燃煤和汽車尾氣)也從2011年的2400萬(wàn)噸下降至2014年的2080萬(wàn)噸。而這兩種氣體正是產(chǎn)生大氣中含硫、氮顆料(即PM2.5的主要成分)的罪魁禍?zhǔn)?。平均?lái)說,全國(guó)污染水平已經(jīng)呈趨平或下降趨勢(shì)。在北京,2016年P(guān)M2.5的平均水平是每立方米73微克,比2015年下降了9.9%,相比2013年則下降了18%。

那么,如果中國(guó)政府果真采取了積極舉措治理大氣污染,而且全國(guó)的平均空氣質(zhì)量也的確有所好轉(zhuǎn),為什么北京等大城市又接連發(fā)布了紅色預(yù)警呢?政府又應(yīng)該出臺(tái)哪些措施進(jìn)行深入治理?

要回答第一個(gè)問題,我們首先要明白一個(gè)事實(shí):中國(guó)的空氣污染問題是受一系列物理和化學(xué)因素影響的,這個(gè)問題比很多人想象的要復(fù)雜得多。首先要把極端空氣污染情況與年平均污染水平區(qū)分開,雖然前者也會(huì)影響后者。盡管紅色預(yù)警偶有發(fā)生,但這與年平均污染水平下降并不矛盾,只要全年其他時(shí)間里的污染水平能夠下降就可以了。極端污染情況是一個(gè)短期事件,通常是由反常的氣象條件引起的,比如風(fēng)力靜穩(wěn)天氣。這種氣象條件是短暫的,但可能影響大氣的化學(xué)反應(yīng),導(dǎo)致污染水平激增。

在某個(gè)區(qū)域生成的“霧霾”(主要成份是PM2.5和臭氧),不僅包括來(lái)自于化石燃料燃燒等來(lái)源的直接排放,如二氧化硫、二氧化氮等,還包括這些物質(zhì)與空氣中的其它污染物發(fā)生化學(xué)反應(yīng)所形成的“二級(jí)”污染物,如硫酸鹽和硝酸鹽顆料物等。

更復(fù)雜的是,這些化學(xué)反應(yīng)還會(huì)受氣象因素的影響。這里的氣象因素不僅包括上文提到的靜穩(wěn)天氣,還包括相對(duì)濕度、云層、逆溫等因素。這些物理化學(xué)因素在每個(gè)地區(qū)都不盡一致,科學(xué)家尚且難以完全厘清,更不用說政策制定者了。PM2.5的控制在任何國(guó)家都是一個(gè)循序漸進(jìn)的過程,需要幾十年才能對(duì)其產(chǎn)生充分的科學(xué)理解,以及出臺(tái)有效政策進(jìn)行治理。因?yàn)殡S著國(guó)家經(jīng)濟(jì)發(fā)展方式的變化,問題的本身也在不斷變化。

舉個(gè)例子就可以說明霧霾的化學(xué)機(jī)制有多復(fù)雜,甚至能讓辛辛苦苦的治理努力在某種程度上付之東流——我們?cè)诖髿饣瘜W(xué)領(lǐng)域的合作專家研究表明,中國(guó)雖然成功地削減了二氧化硫的排放量,然而這對(duì)華北地區(qū)的微量顆料物總量可能毫無(wú)影響。因?yàn)槎趸螂m然減少了,另外一種被釋放出來(lái)的污染物——氨,卻通過大氣化學(xué)反應(yīng)生成了大量的硝酸氨顆粒。

中國(guó)的極端重污染天氣主要發(fā)生在冬季的北方城市,一般需要比較少見的大氣靜穩(wěn)條件(低風(fēng)速和弱垂直混合)才會(huì)發(fā)生,這種大氣條件又造成了污染物的累積和相互反應(yīng)。清華大學(xué)的科研團(tuán)隊(duì)研究表明,PM2.5的輻射反饋也會(huì)進(jìn)一步增強(qiáng)大氣的靜穩(wěn)條件——霧霾對(duì)光輻射的吸收造成了空氣溫度的升高,同時(shí)降低了地表溫度,從而進(jìn)一步削弱了空氣流動(dòng),使污染物難以擴(kuò)散。另外,長(zhǎng)期的大氣監(jiān)測(cè)數(shù)據(jù)也表明,東亞地區(qū)冬季季風(fēng)氣候模式趨弱、冷鋒(即寒流鋒面)力度下降以及年平均風(fēng)速下降等氣候因素,可能也是導(dǎo)致冬季華北地區(qū)極端重污染天氣多發(fā)頻發(fā)的原因之一。

那么,政府下一步應(yīng)該采取哪些措施呢?上述例子表明,政府應(yīng)該加大力度降低氮氧化物以及非燃燒性污染物的排放量,比如氨。通過對(duì)火電廠的整治,中國(guó)在降低氮氧化物排放上已經(jīng)取得了一些進(jìn)步,然而隨著中國(guó)的有車一族越來(lái)越多,要想降低汽車尾氣的排放卻并非易事。如今北京已擁有600余萬(wàn)輛機(jī)動(dòng)車,它們?cè)谂欧盼矚獾耐瑫r(shí)也造成了嚴(yán)重的交通擁堵。雖然北京的公共交通系統(tǒng)也在發(fā)展,但要想讓更多北京及周邊地區(qū)的居民放棄開車,或者是轉(zhuǎn)而購(gòu)買電動(dòng)汽車,可能還需要實(shí)行一些創(chuàng)新政策很多年后才會(huì)有效。

另外,人們很少意識(shí)到氨也是一種空氣污染物,因?yàn)樗⒎鞘峭ㄟ^燃燒排放的,而主要來(lái)自于畜牧業(yè)以及化肥的使用。如果政府要對(duì)氨排放進(jìn)行控制,就需要農(nóng)業(yè)部出臺(tái)一系列新政策。

當(dāng)然,中國(guó)也可以通過使用非化石能源來(lái)解決本國(guó)的大氣污染和氣候變化問題。中國(guó)在新能源領(lǐng)域的成就早已舉世皆知了,在不到10年的時(shí)間里,中國(guó)的風(fēng)能發(fā)電量已達(dá)世界第一,而且仍然在繼續(xù)大力發(fā)展風(fēng)能。同時(shí),中國(guó)的水電發(fā)電量幾乎翻了三番。目前中國(guó)在全球光伏市場(chǎng)上已經(jīng)處于主宰地位,并且最近又成為了全球第一大太陽(yáng)能發(fā)電國(guó)。上周,中國(guó)國(guó)家能源局宣布,到2020年,中國(guó)將向可再生能源領(lǐng)域追加投資3610億美元。然而由于中國(guó)的火電規(guī)模實(shí)在太大,加之交通運(yùn)輸領(lǐng)域還在持續(xù)增長(zhǎng),這些雄心勃勃的計(jì)劃也只能將非化石燃料占總體能源消費(fèi)的比例從2014年的12.5%提高至2030年的20%。更何況要想實(shí)現(xiàn)這個(gè)目標(biāo),中國(guó)不僅要付出高昂的成本,還要解決一些難度極高的技術(shù)挑戰(zhàn),將不太穩(wěn)定的風(fēng)能和太陽(yáng)能整合到不太靈活的由火電主導(dǎo)的電力系統(tǒng)中。

除了技術(shù)上的挑戰(zhàn)以外,還有一些政策方面的挑戰(zhàn),比如地方政府各行其是、國(guó)有行業(yè)權(quán)力過大等等。舉個(gè)例子:雖然現(xiàn)有的火電廠的利用率已經(jīng)出現(xiàn)了下降,而且非化石能源的發(fā)電能力也在不斷提高,但最近又有100多家火電廠建設(shè)項(xiàng)目獲得了地方政府的審批。一座新火電廠的運(yùn)營(yíng)壽命大約在40年左右,由于中央政府未能有效控制地方?jīng)Q策,這也將給未來(lái)中國(guó)能源體系向可再生能源轉(zhuǎn)型帶來(lái)阻礙。這個(gè)問題跟中國(guó)鋼鐵行業(yè)的產(chǎn)能過剩問題大同小異,中國(guó)的鋼鐵企業(yè)大部分都是國(guó)有的,這些企業(yè)都想通過低價(jià)策略銷售和出口鋼鐵,以保證員工就業(yè),所以它們對(duì)政府削減過剩產(chǎn)能的做法都很抗拒。因此,中國(guó)能否成功降低污染物的排放量,最終要取決于政府能否開辟經(jīng)濟(jì)發(fā)展的替代途徑,并且為燒煤的企業(yè)和火電廠提供一種金融方案來(lái)關(guān)停或減少產(chǎn)能。

霧霾問題給北京帶來(lái)的政治挑戰(zhàn)也是不容忽視的。北京四周都被河北省包圍。河北是一個(gè)窮省,它的工業(yè)部門主要靠煤炭提供能源。河北省的工業(yè)排放是北京的主要大氣污染物來(lái)源,但河北省基本沒有什么替代方案能保障這些高污染行業(yè)的人員就業(yè)。要解開這個(gè)死結(jié),就必須創(chuàng)造性地進(jìn)行改革,并對(duì)現(xiàn)有政策做出轉(zhuǎn)變。

上述復(fù)雜的科學(xué)原理還表明,中國(guó)必須加倍努力地研究每個(gè)地區(qū)空氣污染的化學(xué)和物理成因。目前,中國(guó)政府不僅在國(guó)內(nèi)開展了大量相關(guān)研究,同時(shí)也鼓勵(lì)國(guó)內(nèi)科研機(jī)構(gòu)與國(guó)外科學(xué)家合作研究這一課題。中國(guó)可能還得過上幾十年才能達(dá)到西方發(fā)達(dá)國(guó)家的空氣質(zhì)量,但這些都表明,中國(guó)政府已經(jīng)意識(shí)到,國(guó)家必須在未來(lái)的科技發(fā)展上投入重資,以應(yīng)對(duì)霧霾天氣給公民健康帶來(lái)的壓力與挑戰(zhàn)。(財(cái)富中文網(wǎng))

本文作者Chris Nielsen是哈佛大學(xué)中國(guó)能源經(jīng)濟(jì)環(huán)境項(xiàng)目的常務(wù)主任。何文勝(Mun Ho)是該項(xiàng)目的一位經(jīng)濟(jì)學(xué)家,他也是華盛頓未來(lái)資源研究所的訪問學(xué)者。點(diǎn)此查看本文的相關(guān)參考文獻(xiàn)。

譯者:樸成奎

BEIJING, CHINA - NOVEMBER 15: Chinese women wear masks as haze from smog caused by air pollution hangs over the Forbidden City on November 15, 2015 in Beijing, China. As a result of industry, the use of coal, and automobile emissions, the air quality in China's capital and other major cities is often many times worse than standards set by the World Health Organization. (Photo by Kevin Frayer/Getty Images) Kevin Frayer Getty Images

Commentary

China’s problems with severe air pollution are back in the news. Last week, smog levels in China reached historic levels; as many as 32 cities were under “red alert,” the country’s most severe pollution warning. This followed two other red alerts in Beijing in December, which resulted in closures of schools and factories; half of the capital’s cars were banned from roads.

The persistence of China’s air pollution may puzzle some, given the country’s campaign to curb pollution in recent years. In 2013, a new English word, “airpocalypse,” emerged after severe smog in Beijing prompted the government to enact a massive national air pollution control plan amid public anxiety. “PM2.5,” a term for fine particulates, also entered the public lexicon as citizens monitored the daily reports of pollution levels.

Indeed, China has had substantial successes in reducing pollution emissions since 2011, even as its economy has grown more than 7% per year and coal use has stabilized. For example, total sulfur dioxide (SO2) emissions from all sources (mainly industrial and residential coal combustion) fell from 21.9 million tons in 2010 to 19.7 million in 2014, continuing a downward trend from 25.9 million in 2006 initiated by mandated desulfurization of emissions from electric power plants. Total emissions of nitrogen oxides (NOX), chiefly from the same coal-burning sources as well as fuel use by vehicles, fell from 24 million tons in 2011 to 20.8 million in 2014. These two gases form sulfate and nitrate particles in the atmosphere, key components of PM2.5. On average, national pollution levels have been stable or falling as a result. In Beijing, the annual average PM2.5 level was 73 micrograms per cubic meter in 2016, down 9.9% from 2015 and 18% from 2013.

If China’s government has acted aggressively and average levels have improved, why then do Beijing and other cities continue to experience red-alert pollution events? What more can the government do to reduce them?

The answer to the first question begins with the fact that China’s air pollution is influenced by a wide variety of physical and chemical factors; the problems are a lot more complex than most realize. One should first differentiate severe air pollution episodes and annual average pollution levels, although the former contributes to the latter. Annual average pollution levels can decline in spite of occasional red-alert spikes, as long as levels fall sufficiently over the rest of the year. A pollution episode is a short-term event, generally initiated by unusual meteorological conditions—such as low wind speeds—that are themselves transient and may affect chemical processes in the atmosphere that contribute to the spike.

Smog—chiefly PM2.5 and ozone—in a given location results not only from “primary” pollutants, meaning those emitted directly from fossil fuels and other sources, including SO2, NOX, and some forms of PM2.5. It also results from chemical reactions of these and other pollutants in the air, creating new “secondary” pollutants, including sulfate and nitrate particles.

Complicating things further, this chemistry is influenced by meteorology, not just wind speeds but also relative humidity, cloudiness, temperature inversions, and more. The complex chemical and physical pathways unique to each region are challenging for scientists to untangle, let alone for policy makers to address. PM2.5 control progresses incrementally in all countries, taking decades to build the requisite scientific understanding and to develop and enforce effective policies, as the problems themselves evolve due to changes in the underlying economy.

As an example of how the chemical complexity can confound hard-won efforts at pollution control, research by our collaborators in atmospheric chemistry suggests that China’s successful reduction of SO2 emissions may have had no effect on fine particles overall in North China. This is because the reduced SO2 may simply free another pollutant, ammonia, to react instead with abundant NOX creating ammonium nitrate particles.

China’s worst air pollution episodes occur in northern cities in the winter, and generally require unusually stable atmospheric conditions (low wind speeds and weak vertical mixing), which allow pollutants to accumulate and react with each other. Research by colleagues at Tsinghua University suggests a PM2.5-radiation feedback might be reinforcing these conditions; absorption of solar radiation by airborne haze effectively warms the atmosphere aloft and reduces warming of the surface, further reducing air movement and trapping pollutants. Moreover, long-term meteorological data now suggest a weakening winter monsoon climate pattern in East Asia, diminishing strength of cold fronts, and declining annual average wind speeds. It is possible that climate change is playing a role in the persistent severity of episodic wintertime pollution events in North China.

As to what more the government can do, the example above shows that greater efforts may be needed to reduce emissions of NOX and also non-combustion pollutants, including ammonia. Beijing is making progress in reducing NOX from coal-fired plants, which is relatively straightforward if costly, but it is more difficult to do so from the transportation sector as more people drive. There are 6 million vehicles in Beijing today spewing fumes while crawling along congested roads. The transit system is expanding, but it will take many years of innovative policy to get more people in the city and surrounding areas to leave their cars or switch to electric vehicles.

What’s more, ammonia is rarely even recognized as an air pollutant because it results not from combustion but livestock farming and fertilizer use, and its control would require new types of policies developed with the Ministry of Agriculture.

China of course can address local air pollution and climate change by shifting to non-fossil energy sources. The government’s efforts to expand renewables are now well known: in less than 10 years it built the world’s largest wind power capacity, and continues to expand it. China is also nearly tripling its hydropower capacity; it now dominates the world market in photovoltaic cell production and has just become the world’s largest generator of solar power. Last week, China’s National Energy Administration announced investment of another $361 billion into renewable power generation by 2020. However, given the large base of coal-fired electricity and growing transport sector, these ambitious plans will only raise the non-fossil fuel share of total energy consumption to 20% by 2030 from 12.5% in 2014. Achieving this goal will not only be expensive but also involves difficult technical challenges of integrating inherently variable wind and solar power into an inflexible coal-dominated system.

These technical challenges are compounded by political ones that arise from decentralized decision-making in China and the bureaucratic power of state-owned industries. A prime example is a glut of more than 100 new coal-fired power plants now approved for construction by local governments, despite falling utilization rates at existing plants, and growing non-fossil generating capacities. Given 40-year lifetimes of new plants, this failure of the central government to control local decision-making may further entrench resistance to a shift to renewables for decades into the future. This resembles the excess capacity in the steel-making industry: iron and steel enterprises, which are mostly state-owned, are willing to sell and export at low prices to maintain employment, and are resisting efforts to curtail production. The ability to reduce pollution emissions thus depends crucially on the ability of the political system to find alternative sources of economic development and provide a financial path for coal-fired industrial enterprises and power plants to close or reduce output.

In the case of Beijing, the political challenges are profound. The city is surrounded by Hebei, a poor province with a large industrial sector fueled by coal. Its emissions are major sources of pollution in the capital, but Hebei’s government has little alternative to maintaining employment in these industries. Untangling this knot will require imaginative reform and transfer policies.

The complex science noted above also indicates that efforts must be redoubled to build knowledge on the chemical and physical processes driving air pollution in each region. The government is attempting to do so by underwriting domestic research and encouraging partnerships with scientists abroad. China may still be decades away from the air pollution levels of western countries, but it is telling that its government recognizes it must invest heavily in scientific advance for the future as it also grapples with the challenges and tensions of protecting the environmental well-being of its citizens today.

Chris Nielsen is executive director of the Harvard-China Project on Energy, Economy and Environment, Mun Ho is an economist there. Ho is also a Visiting Scholar at Resources for the Future, Washington DC. Click here to see full citation of research and papers.

掃描二維碼下載財(cái)富APP
99久久人妻精品免费二区| 精品国精品国产自在久久| 亚洲中文无码亚洲人网站| 中文字幕乱偷在线观看| 国产成人精品一区二区三区免费看| 亚洲成a人片在线观看中文app| 欧美日韩在大午夜爽爽影院| 婷婷激情综合网亚州五月中文字幕 | 黑人玩弄出轨人妻中文字幕| 亚洲AⅤ无码乱码在线播放| 2016年毛片无码免费| 国产精品亚洲专区无码唯爱网| 五月天在线视频国产在线| 久久精品久久久久久噜噜中文字幕| 野外做受又硬又粗又大视频| 看免费视频一区二区三区| 人妻少妇精品视中文字幕国语| 精品国产日韩亚洲一区在线| 国产在线不卡国产区美女| 97人人看碰人免费公开视频| 俄罗斯三级经典在线观看电影大全| 久久久久久精品免费| 亚洲不卡国产黄页网址| 久久亚洲男人第一av网站久久| 中文字幕天天躁日日躁狠狠躁免费| 精品人妻少妇一级毛片免费| 99热都是精品久久久久久| 亚洲精品成人片在线观看精品字幕| 久久精品中文闷骚内射| 国产精品1000夫妇激情啪发布亚洲乱码| 三级全黄的视频在线观看| 久久综合给合久久狠狠狠97色69| 久久精品一区二区三区不卡| 亚洲麻豆av无码成人片在线观看| 日韩av无码一区二区三区| 人体内射精一区二区三区| 日韩精品青青久久久| 精品国产鲁一鲁一区二区交| 无码AⅤ精品影院| 欧美一区二区三区激情视频| 久久精品亚洲中文字幕无码麻豆|