成人小说亚洲一区二区三区,亚洲国产精品一区二区三区,国产精品成人精品久久久,久久综合一区二区三区,精品无码av一区二区,国产一级a毛一级a看免费视频,欧洲uv免费在线区一二区,亚洲国产欧美中日韩成人综合视频,国产熟女一区二区三区五月婷小说,亚洲一区波多野结衣在线

立即打開
人工智能也有偏見與歧視,如何解決成為行業(yè)難題

人工智能也有偏見與歧視,如何解決成為行業(yè)難題

Jeremy Kahn 2019年07月21日
兩家人工智能領(lǐng)軍企業(yè)的高管在近日指出,對于那些希望采用人工智能軟件的公司來說,偏見仍然是一個值得擔(dān)憂的根本性問題。

IBM和Salesforce是人工智能工具軟件領(lǐng)域的兩家領(lǐng)軍企業(yè),這兩家公司的高管在近日指出,對于那些希望采用人工智能軟件的公司來說,偏見仍然是一個值得擔(dān)憂的根本性問題。

讓很多企業(yè)越來越擔(dān)心的是,用于訓(xùn)練人工智能系統(tǒng)的數(shù)據(jù)中所隱藏的偏見,有可能會導(dǎo)致系統(tǒng)生成的結(jié)果對某些應(yīng)該受到保護的群體(比如女性和少數(shù)族裔)做出不公平的結(jié)論,甚至造成歧視或涉嫌違法。

比如有人發(fā)現(xiàn),一些人臉識別系統(tǒng)在識別深膚色和淺膚色人臉時,精確度往往不高,原因是用于訓(xùn)練該系統(tǒng)的深膚色人臉數(shù)據(jù)遠遠不足。最臭名昭著的一個例子是,美國部分州的司法部門使用了一套人臉識別系統(tǒng),用來決定是否應(yīng)該批準(zhǔn)犯罪嫌疑人保釋或假釋。然而在犯罪記錄相似的前提下,系統(tǒng)卻認(rèn)為黑人嫌犯比白人嫌犯有更高的再次犯罪風(fēng)險。

軟件公司Salesforce的首席科學(xué)家理查德·佐赫爾在科羅拉多州阿斯彭市舉辦的《財富》頭腦風(fēng)暴科技大會上指出:“偏見將成為未來人工智能領(lǐng)域里的一個根本性問題?!?/p>

在這次《財富》頭腦風(fēng)暴科技大會上,IBM公司的研究總監(jiān)達里奧·吉爾也表達了同樣的擔(dān)憂:“我們需要在人工智能工程上采取堅實手段,以防止人工智能出現(xiàn)毫無根據(jù)的偏見?!?/p>

吉爾表示,IBM正在加大相關(guān)技術(shù)的研發(fā)力度,為企業(yè)提供所謂“數(shù)據(jù)志”功能。這種技術(shù)能夠記錄系統(tǒng)是使用哪些數(shù)據(jù)決策的,這些數(shù)據(jù)又是如何生成的、何時被使用的,以及它是如何用于進行推薦或預(yù)測的。

吉爾說,這種人工智能的審查跟蹤機制對于問責(zé)十分重要,畢竟責(zé)任終究是要由人來承擔(dān)的。他表示:“我們必須把責(zé)任落實到開發(fā)這個軟件的人身上,我們要知道他們的目的是什么、意圖是什么。創(chuàng)建和使用這個軟件的機構(gòu)必須要承擔(dān)責(zé)任?!?/p>

吉爾和佐赫爾都表示,消除人工智能的偏見并不是一件容易的事情,特別是機器學(xué)習(xí)系統(tǒng)非常擅于發(fā)現(xiàn)數(shù)據(jù)集里各個變量的相關(guān)性。因此,雖然我們可以告訴這些軟件在進行相關(guān)決策時(比如提供征信方面的建議)不考慮種族因素,但系統(tǒng)仍然會考慮到一個人的住址或郵編等變量。佐赫爾指出,至少在美國,像地址、郵編等信息,實際上還是有可能與族裔群體高度相關(guān)的。

吉爾還表示,著眼這一問題,IBM已經(jīng)開發(fā)了一些相關(guān)軟件,比如它的AI Fairness 360工具包,可以幫助企業(yè)自動在數(shù)據(jù)中發(fā)現(xiàn)類似隱藏的相關(guān)性問題。

不過,佐赫爾也指出,發(fā)現(xiàn)這種相關(guān)性是一回事,但從很多方面看,知道究竟應(yīng)該怎樣解決它,則是一個困難得多的問題。

佐赫爾表示,在某些情況下,只將一種產(chǎn)品推薦給女性是沒有問題的——比如吸奶器。而在其他情況下,如果系統(tǒng)在進行推薦時出現(xiàn)了類似的性別歧視,則可能涉嫌違法。Salesforce等公司生產(chǎn)的一些通用型人工智能工具幾乎各行各業(yè)都可以使用,因此他們面臨的困難也尤為特殊。

吉爾和佐赫爾都表示,正因為如此,很多企業(yè)才選擇用自己的數(shù)據(jù)來訓(xùn)練人工智能系統(tǒng),而不是使用已經(jīng)使用預(yù)先訓(xùn)練好的軟件包來執(zhí)行聊天機器人或自動圖像標(biāo)記程序的訓(xùn)練任務(wù)。吉爾指出,構(gòu)建自己的人工智能程序,讓企業(yè)掌握了更大的控制權(quán),同時也更有可能檢測出隱藏的偏見。

佐赫爾和吉爾還表示,人工智能的優(yōu)點之一,就是它能夠幫助企業(yè)發(fā)現(xiàn)其實際業(yè)務(wù)中現(xiàn)有的偏見因素。比如,它可以發(fā)現(xiàn)哪些管理者不愿意提拔女性員工,哪些金融機構(gòu)不愿意向少數(shù)族裔發(fā)放信貸等等。佐赫爾表示:“人工智能有時就像我們面前的一面鏡子,它會告訴你,這就是你一直以來在做的事情?!?/p>

佐赫爾認(rèn)為,在構(gòu)建人工智能系統(tǒng)的人自身變得更加多元化之前,有些類型的偏見是不太可能被徹底消除的。目前,很多從事人工智能軟件開發(fā)的計算機工程師都是白人,而且當(dāng)前開發(fā)的很多人工智能軟件都只反映了城市富裕人口的需求。他還表示,這也是Salesforce公司何以支持非洲深度學(xué)習(xí)大會(Deep Learning Indaba)等項目的原因之一。非洲深度學(xué)習(xí)大會也是非洲地區(qū)人工智能研究人員的一次盛會。(財富中文網(wǎng))

譯者:樸成奎

Bias will continue to be a fundamental concern for businesses hoping to adopt artificial intelligence software, according to senior executives from IBM and Salesforce, two of the leading companies selling such A.I.-enabled tools.

Companies have become increasingly wary that hidden biases in the data used to train A.I. systems may result in outcomes that unfairly—and in some cases illegally—discriminate against protected groups, such as women and minorities.

For instance, some facial recognition systems have been found to be less accurate at differentiating between dark-skinned faces as opposed to lighter-skinned ones, because the data used to train such systems contained far fewer examples of dark-skinned people. In one of the most notorious examples, a system used by some state judicial systems to help decide whether to grant bail or parole was more likely to rate black prisoners as having a higher risk of re-offending than white prisoners with similar criminal records.

“Bias is going to be one of the fundamental issues of A.I. in the future,” Richard Socher, the chief scientist at software company Salesforce, said. Socher was speaking at Fortune’s Brainstorm Tech conference in Aspen, Colo.

Dario Gil, director of research at IBM, also speaking at Brainstorm Tech, echoed Socher’s concerns. “We need robust A.I. engineering to protect against unwarranted A.I. bias,” he said.

At IBM, Gil said, the company was increasingly looking at techniques to provide businesses with a “data lineage” that would record what data a system used to make a decision, how that data was generated and how and when it was used to make a recommendation or prediction.

Gil said this kind of A.I. audit trail was essential for ensuring accountability, something he said must always reside with human-beings. “We have to put responsibility back to who is creating this software and what is their purpose and what is their intent,” he said. “The accountability has to rest with the institutions creating and using this software.”

Both Gil and Socher said that eliminating A.I. bias was not an easy problem to solve, especially because machine learning systems were so good at finding correlations between variables in data sets. So, while it was possible to tell such software to disregard race when making, for example, credit recommendations, the system might still use a person’s address or zip code. In the U.S., at least, that information can also be highly correlated with race, Socher said.

Gil said that IBM has been developing software—such as its AI Fairness 360 toolkit—that can help businesses automatically discover such hidden correlations in their data.

But, Socher said, discovering such correlations is one thing. Knowing exactly what to do about them is, in many ways, a much harder problem.

Socher said that in some cases, such as marketing breast pumps, it might be alright to only recommend a product to women. Meanwhile, in other contexts, the same sort of gender discrimination in recommendations would be illegal. For a company like Salesforce that is trying to build A.I. tools that are general enough that companies from any industry can use them for almost any use case, this presents a particular dilemma, he said.

This is one reason, both Gil and Socher said, many businesses are choosing to train A.I. systems from their own data rather than using pre-trained software packages for tasks chatbots or automated image-tagging. Building their own A.I., Gil said, gave businesses more control and more chances to detect hidden biases.

Both Socher and Gil said that one of the great things about A.I. is that it can help companies uncover existing bias in their business practices. For instance, it can managers who don’t promote women or financial institutions that don't extend credit equally to minorities. “A.I. sometimes puts a mirror in front of our faces and says this is what you have been doing all the time,” Socher said.

He also said that certain types of bias were unlikely to be resolved until the people building A.I. systems were themselves more diverse. At the moment, he said, too many of the computer scientists creating A.I. software are white men. He also said too many of the A.I. applications developed so far reflect the concerns of affluent urbanites. He said this is one reason Salesforce has been supporting projects like the Deep Learning Indaba, a conference designed to bring together A.I. researchers from across Africa.

掃碼打開財富Plus App
久久综合亚洲色一区二区三区| 午夜精品久久久久久久尤物| 久久精品毛片免费观看| 亚洲国产在线精品国自产拍| 欧美激情一区二区三区中文字幕| 精品国产乱码久久久久久蜜桃免费| 真实的国产乱ⅩXXX66| 2024久热爱精品视频在线观看| 日本日本乱码伦视频在线观看| 免费男人下部进女人下部视频| 国产内射老熟女AAAA| 精品国产福利在线观看不卡| 国产精品无码一本二本三本色| 国产乱对白中文乱人伦| 成人亚洲一区二区三区在线| 成熟丰满熟妇高潮XXXXX| 国产伦精品一区二区三区视频猫咪| 波多野结衣一区二区| 亚洲无线观看国产高清| 国语对白嫖老妇胖老太| 夜夜高潮夜夜爽夜夜爱爱| 国产精品99久久99久久久不卡| 忘忧草在线影院www日本韩国| AV无码免费一区二区三区| 一本色道无码不卡在线观看| 吸咬奶头狂揉60分钟视频| 国产mv动漫精品一区二区三区| 极品白嫩美女白浆成人福利在线看| 欧美熟妇另类久久久久久多毛| 成人精品视频99在线观看免费| 国产伦精品一区二区三区妓女| 国产a一级毛片爽爽影院无码| 亚洲麻豆av无码成人片在线观看| 日韩欧美狼一区二区三区免费观看| 亚洲黄视频在线观看| 亚洲VA欧美VA天堂V国产综合| 成人H无码动漫在线观看| 国产午夜福利100集发布| 日韩a无码av一区二区三区| 欧美日韩精品一区二区在线视频| 免费无码婬片AAAA片直播表情|