成人小说亚洲一区二区三区,亚洲国产精品一区二区三区,国产精品成人精品久久久,久久综合一区二区三区,精品无码av一区二区,国产一级a毛一级a看免费视频,欧洲uv免费在线区一二区,亚洲国产欧美中日韩成人综合视频,国产熟女一区二区三区五月婷小说,亚洲一区波多野结衣在线

立即打開(kāi)
大數(shù)據(jù)崗位有望迎來(lái)大爆炸

大數(shù)據(jù)崗位有望迎來(lái)大爆炸

Clay Dillow 2013年09月06日
麥肯錫的一份報(bào)告預(yù)計(jì),到2018年僅美國(guó)在“具備深入分析能力”的大數(shù)據(jù)專業(yè)人才方面的缺口就在14萬(wàn)人到18萬(wàn)人之間。更重要的是,大數(shù)據(jù)工作并不是工程師和IT部門的專利,大數(shù)據(jù)分析師可能來(lái)自各個(gè)領(lǐng)域?,F(xiàn)在已經(jīng)有音樂(lè)、物理等專業(yè)的人才成功挺進(jìn)大數(shù)據(jù)領(lǐng)域。

????大數(shù)據(jù)被親切地稱為“新石油”,并被視為能讓美國(guó)日漸衰落的制造業(yè)止住下滑態(tài)勢(shì)的重要砝碼。盡管“數(shù)據(jù)是新石油”這個(gè)比喻并不完美,甚至不那么站得住腳(畢竟數(shù)據(jù)數(shù)量極大,還可以不斷再生),但這個(gè)說(shuō)法還是有它的可取之處。就像石油在上世紀(jì)初所發(fā)揮的作用一樣,大數(shù)據(jù)也將推動(dòng)本世紀(jì)的經(jīng)濟(jì)發(fā)展。只不過(guò)它可能并不會(huì)像多數(shù)人所設(shè)想的那樣發(fā)揮這種作用。

????就像石油一樣,企業(yè)也知道數(shù)據(jù)大量存在,而且光知道它在哪兒是遠(yuǎn)遠(yuǎn)不夠的——要讓這些數(shù)據(jù)產(chǎn)生價(jià)值,就必須提煉、加工并用合適的形式呈現(xiàn)出來(lái)。也和能源經(jīng)濟(jì)一樣,數(shù)據(jù)經(jīng)濟(jì)也需要全身心奉獻(xiàn)的勞動(dòng)者——據(jù)一份常被引用的高德納研究公司(Gartner Research)的分析報(bào)告稱,目前僅IT領(lǐng)域就有440萬(wàn)人這樣一支大軍。

????不過(guò),這兩者的相似之處也就到此為止了。石油業(yè)想要找到并培訓(xùn)足夠的勞動(dòng)力開(kāi)采石油從來(lái)就不用費(fèi)太大的勁,但要培訓(xùn)嫻熟的大數(shù)據(jù)專業(yè)人才就完全是另一碼事了。麥肯錫公司(McKinsey & Company)的一份報(bào)告預(yù)計(jì),到2018年僅美國(guó)在“具備深入分析能力”的大數(shù)據(jù)專業(yè)人才方面的缺口就在14萬(wàn)人到18萬(wàn)人之間——這種人才精通機(jī)器學(xué)習(xí)、統(tǒng)計(jì)學(xué)、及/或計(jì)算機(jī)科學(xué),而真正實(shí)干的大數(shù)據(jù)人才就是那種知道如何將大量數(shù)據(jù)轉(zhuǎn)化為有意義信息的人。

????但是,對(duì)大數(shù)據(jù)勞動(dòng)力市場(chǎng)的這一悲觀預(yù)計(jì)中常常被忽略的因素是,大數(shù)據(jù)對(duì)就業(yè)的影響遠(yuǎn)比深度分析和IT領(lǐng)域要更深遠(yuǎn)。企業(yè)需要的專業(yè)人才不一定是專攻深度分析專業(yè)的,但必須對(duì)大數(shù)據(jù)具有獨(dú)特的悟性。這類人才并不是非要有計(jì)算機(jī)科學(xué)或統(tǒng)計(jì)學(xué)的學(xué)位不可。

????管理和技術(shù)咨詢公司博思艾倫咨詢公司(Booz Allen Hamilton)的一位副總裁最近向《信息周刊》(InformationWeek)雜志透露,他們已成功地將物理學(xué)和音樂(lè)專業(yè)的人才吸納進(jìn)了數(shù)據(jù)科學(xué)團(tuán)隊(duì)——這些人能創(chuàng)造性地思考問(wèn)題。他們對(duì)計(jì)算機(jī)科學(xué)也許知之甚少,但卻懂得如何運(yùn)用與眾不同的方法看待大數(shù)據(jù)問(wèn)題。盡管眾多企業(yè)或各經(jīng)濟(jì)體確實(shí)需要數(shù)據(jù)科學(xué)家來(lái)管理龐大的數(shù)據(jù)庫(kù),也需要信息技術(shù)團(tuán)隊(duì)提供相應(yīng)支持,但在更大程度上,他們需要的是知識(shí)豐富、善于創(chuàng)造性思考的專業(yè)人才來(lái)最大限度地利用好大數(shù)據(jù)資源。

????喬治城大學(xué)(Georgetown University)麥克唐納商學(xué)院教授貝奇?佩奇?西格曼博士是一位技術(shù)和信息系統(tǒng)領(lǐng)域的專家,他說(shuō):“隨著軟件、界面設(shè)計(jì)及相關(guān)領(lǐng)域的發(fā)展,今后分析大數(shù)據(jù)會(huì)變得更加容易。所以技術(shù)問(wèn)題不會(huì)構(gòu)成太大阻礙。對(duì)企業(yè)來(lái)說(shuō),更重要的是要有大量不光是會(huì)制作統(tǒng)計(jì)圖表和分析表格,而是會(huì)利用手頭信息優(yōu)化決策的人才?!?/p>

????與大數(shù)據(jù)分析廣泛應(yīng)用密切相關(guān)的用人難題將不僅局限于企業(yè)的IT部門或?qū)TO(shè)的“數(shù)據(jù)部門”。同時(shí)也不僅僅是像數(shù)據(jù)科學(xué)家和統(tǒng)計(jì)學(xué)家這樣的大數(shù)據(jù)專家才能從這股熱潮中獲益。在以數(shù)據(jù)分析為中心的領(lǐng)域里,如風(fēng)險(xiǎn)管理、市場(chǎng)營(yíng)銷和研究科學(xué),與大數(shù)據(jù)有關(guān)的眾多機(jī)會(huì)早已獲得充分利用,不過(guò)這種應(yīng)用實(shí)際上沒(méi)有止境。

????IBM公司的“全球大學(xué)關(guān)系項(xiàng)目”(Global University Relations Programs)總監(jiān)、同時(shí)也是計(jì)算機(jī)科學(xué)家的吉姆?斯伯熱表示,從學(xué)術(shù)角度看,在一些本來(lái)跟數(shù)據(jù)無(wú)緣的學(xué)科里,比如社會(huì)科學(xué)和人文學(xué)科的一些分支,大數(shù)據(jù)也正在發(fā)揮重要作用。同時(shí),在醫(yī)藥研究、各種產(chǎn)品開(kāi)發(fā)和建模,以及所有研究科學(xué)中,大數(shù)據(jù)分析也正日益成為不可或缺的角色。為了保持競(jìng)爭(zhēng)優(yōu)勢(shì),企業(yè)會(huì)要求各級(jí)專業(yè)人才充分掌握大數(shù)據(jù)的有關(guān)概念,同時(shí)了解如何充分運(yùn)用它們。

????Big data has been favorably cast as "the new oil" and held up as the economic counterweight to America's sinking manufacturing sector. And while the "data is the new oil" analogy isn't perfect or even necessarily sound (data is both abundant and renewable, after all), there's some merit to the metaphor. As oil did at the beginning of the last century, big data is going to drive economies in the century ahead. But it may not do so in the way that many people think it will.

????As with oil, companies know data is out there in large quantities and that it's not enough to simply know where it is -- it has to be extracted, refined, and delivered in a usable format to be valuable. And like the energy economy before it, the data economy needs dedicated people -- 4.4 million of them by 2015 in the IT field alone, according to an oft-cited Gartner Research analysis.

????But here the similarities end. The oil patch has never had much trouble finding and training enough roughnecks to get oil out of the ground, but training up skilled big data professionals is a different enterprise entirely. In the U.S. alone, a McKinsey & Company report projects a shortfall of between 140,000 and 190,000 "deep analytical" big data professionals by 2018 -- that is, people with highly technical skills in machine learning, statistics, and/or computer science, the actual hands-on big data people that know how to crunch huge data sets into meaningful information.

????But what's often overlooked in this dim projection of the big data labor market is that the impact of big data on employment goes far deeper than the deep analytics and IT fields. Companies need professionals at all levels that are not necessarily schooled in deep analytics but are nonetheless big data-savvy. These professionals don't need degrees in computer science or statistics.

????A VP at management consulting and technology advisory outfit Booz Allen Hamilton recently told InformationWeek that the company has had great success bringing physicists and music majors onto data science teams -- creative thinkers who know less about computer science and more about how to look at big data problems in a different way. Though companies and economies will certainly need data scientists to manage their massive databases and information technology teams to support them, to a far greater degree they'll need professionals knowledgeable and creative enough to leverage big data to the greatest possible advantage.

????"Advances in software, in interface design, and things like that will make it easier to analyze big data in the future," says Dr. Betsy Page Sigman, a professor at Georgetown University's McDonough School of Business and an expert on technology and information systems. "So it won't be as big of a technological hurdle. The more important thing for companies will be to have a lot of people that understand not just how to produce statistics and analytics, but understand how to make better decisions because they have this information."

????Any employment bump tied to the proliferation of big data analytics won't be confined to IT departments or even to dedicated "data divisions" that emerge within companies. And it isn't just big data specialists like data scientists and statisticians that stand to benefit from this boom. Big data opportunities are already being exploited in data-centered pursuits like risk management, marketing, and research science, but the applications are virtually limitless.

????Academically, big data is playing a role in decidedly non-data disciplines, like some portions of the social sciences and humanities, says Jim Spohrer, computer scientist and director of IBM's Global University Relations Programs. It will increasingly become integral in medical research, various kinds of product development and modeling, and all types of research science. To remain competitive, companies will require professionals at all levels that fundamentally grasp big data concepts and and know how to use them to their advantage.

掃碼打開(kāi)財(cái)富Plus App
久久久久久88色偷偷| 特级毛片a级毛片免费观看网站| 尹人香蕉99久久综合网站| 久久精品久久久久久噜噜中文字幕| 国产精品爆乳中文天堂AV| 野花香影院在线观看视频免费| 无人区码一码二码三码区别新月| 久久久久成亚洲国产av| 亚洲综合精品欧美在线一区二区| 一极a做片性视频无码鲁鲁网| 免费午夜无码片在线观看影院| 香蕉eeww99亚洲深夜日综| 国产成人92精品午夜福利| 草草久久久无码国产专区| 国产精品一区二区美女视频| 思思久久er99精品观看互动交流| 久久精品极品盛宴观看| 精品国产欧美一区二区五十路| 浴室人妻的情欲HD三级| 人人妻人人澡人人爽欧美一区九九| 日日摸夜夜添夜夜添无码| 天天综合网91免费看午夜无码鲁丝片真人一级毛片| 国产av日韩aⅴ亚洲av| 亚洲精品无码αv人在线观看| 中日精品无码一本二本三本| 久久午夜一级a毛片无码鲁丝片午夜精品| 中文字幕色AV一区二区三区| 久久精品国产亚洲AV久| 亚洲AV无码成人专区片在线观看| 无码国模国产在线观看| 少妇一级婬片免费放狠狠干狠狠躁| 人妻熟妇久久久久久XXX| 欧美人与动牲交a免费观看| 亚洲熟妇αv午夜无码不卡| 亚洲性无码一区二区三区| 成人区人妻精品一区二区不卡网站| 国产美女 91 在线播放 | 桃美女性感视频一区二区三区| 免费国产自在在线视频| 久久精品国产99久久无毒| 欧美巨大另类极品videosbest|