全球新冠疫情的命運幾何,很可能只由長度為幾百納米的生物積木所決定。
對于來自Moderna和輝瑞(Pfizer)及其合作伙伴BioNTech的兩種主要候選疫苗來說,mRNA是核心所在。這兩家公司的臨床試驗數(shù)據(jù)表明,其疫苗有效率均達到了95%左右。輝瑞公司的疫苗已經(jīng)在英國獲得批準,并可能在幾周內(nèi)開始分發(fā)給部分美國公民。
這場疫苗分發(fā)、全球免疫的挑戰(zhàn),在世界歷史上可謂前所未有。與這一挑戰(zhàn)同樣引人注目的是,在科學的引領和催化之下,疫苗在不到一年的時間里誕生——通常情況下,這一過程需要五年甚至更久。以輝瑞和Moderna的疫苗為例,兩家公司先進的技術(shù),讓擴大生產(chǎn)變得容易得多。
我們不禁要問,疫苗是如何制造出來的呢?學術(shù)機構(gòu)和制藥公司又是如何在新冠疫情期間如此迅速地取得成功的?
疫苗何以從病毒中“脫胎”而生
藥物從不會憑空產(chǎn)生。不管是治療用藥品,還是預防疾病的疫苗,藥物的創(chuàng)造、誕生都是充滿趣味的一個過程。而這一過程的第一步,就是對“生物敵人”進行徹底的檢查。
休斯頓貝勒醫(yī)學院國家熱帶醫(yī)學院(National School of Tropical Medicine at Houston’s Baylor College of Medicine)院長彼得?霍特茲說:“制造疫苗的第一步就是找出病原體的弱點,以確定疫苗進軍的目標。”
疫苗的基本作用是誘導免疫反應,通過身體產(chǎn)生抗體來攻擊抗原,達到保護身體免受病原體侵害的作用。所謂抗原,是指病原體產(chǎn)生免疫反應的組成部分。當真正的病毒來襲時,身體已經(jīng)“認識”了入侵者,可以快速調(diào)用它的抗體庫,以抵抗病原體襲擊。
許多普通疫苗本身含有少量的病毒或細菌。這些病毒或細菌在實驗室培養(yǎng)完成后被殺死,即使存活,活性也已大大削弱,致病可能性不大。
就新冠病毒而言,識別霍特茲所說的“病原體的弱點”是至關重要的第一步。在這過程中,一種叫做刺突蛋白的物質(zhì)格外兇險,同時也很關鍵。
“當說到冠狀病毒時,每個人都會想起這樣的病毒圖片,它有著一簇簇刺突蛋白,即從圓柱形病毒復合物上突出的紅色部分。”Seyfarth Shaw LLP公司華盛頓特區(qū)辦公室的知識產(chǎn)業(yè)部成員迪恩?法內(nèi)利說。
“刺突蛋白”的作用和你想象中的刺突物體的作用完全一樣——刺穿其他東西。“這種刺突蛋白附著在人類細胞中的ACE2蛋白上,因此我們也就知道了這種病毒感染人類的方式?!狈▋?nèi)利補充說。
制藥企業(yè)知道,他們生產(chǎn)的疫苗必須“教會”人們的身體,去攻擊刺突蛋白上吸引抗體的抗原。但是輝瑞和Moderna的研發(fā)方式與傳統(tǒng)疫苗相比,二者截然不同。
制作mRNA疫苗
mRNA是一種強大的生物學工具。實際上,正是這種分子指導著細胞合成哪些物質(zhì),例如蛋白質(zhì)。
從理論上來說,這意味著人們可以利用mRNA將人體細胞轉(zhuǎn)變成微型的制藥工廠,生成抵抗各種疾病的物質(zhì)。但就在一年前,許多生物技術(shù)界人士都對使用mRNA技術(shù)來進行治療的方法提出了質(zhì)疑。
但在一眾疫苗中處于領先的mRNA疫苗采用的正是這種作用機制。今年早些時候,中國的科學家破譯了新冠病毒的基因密碼,并向全球公布。借助這一信息,制藥商已能明白應如何利用mRNA來迫使人體模仿新冠病毒這種特殊的蛋白結(jié)構(gòu),并誘導免疫反應。
本質(zhì)上,這種技術(shù)比傳統(tǒng)的疫苗制造過程落后了一步。使用mRNA技術(shù)生產(chǎn)疫苗的輝瑞/BioNTech和Moderna并沒有將病毒中能喚醒免疫系統(tǒng)的表面蛋白結(jié)構(gòu)直接注射到人體內(nèi),而是注射了帶有此類蛋白編碼的RNA。
菲爾?多米特澤(Phil Dormitzer)是RNA疫苗的堅定推廣者,也是輝瑞疫苗部門的副總裁兼首席科學官。
他說:“我已經(jīng)考慮RNA疫苗很久了。2018年,在我們與BioNTech一致同意啟動新的mRNA計劃后,便開始投入了這項進程?!边@項合作一開始的目的是想要開發(fā)基于mRNA的流感疫苗。但新冠疫情一爆發(fā),他們的研發(fā)重點就轉(zhuǎn)移了。
多米特澤列舉了他對這項技術(shù)充滿熱情的兩個具體原因:靈活性,以及快速投入大規(guī)模量產(chǎn)并擴大治療范圍的能力。他解釋說,使用RNA疫苗時,免疫反應可以同時產(chǎn)生抗體和另一種關鍵的免疫物質(zhì)——T細胞,這一點很重要,因為如果免疫系統(tǒng)中有兩種免疫物質(zhì),一種失效的話還有另一種可以互補,就可以更有效地抵抗新冠病毒。
當疫苗的生產(chǎn)規(guī)模必須大幅增加,以滿足在全球范圍內(nèi)分發(fā)的要求時,第二個原因尤其重要。
“我認為很多人都會傾向于使用mRNA,因為在一天之內(nèi)就可以制作出一條mRNA,對吧?”貝勒醫(yī)學院的霍特茲教授說。“而且有些公司可以通過外包的方式,為人們制作mRNA?!?/p>
與傳統(tǒng)的疫苗不同,mRNA技術(shù)不必花數(shù)月時間手動收集并提純病原體中的抗原,即可制成最終產(chǎn)品。人們可以簡單地使帶有指令的mRNA序列進入人體。之后,人體的細胞會自行完成繁重的免疫工作。
這就是為什么輝瑞和Moderna的疫苗可以超越競爭對手、率先進入審批環(huán)節(jié)的原因之一,并且得益于此,它們還有可能在2021年底之前,追加數(shù)億劑疫苗的生產(chǎn)。
新冠疫苗大軍
要想最終戰(zhàn)勝新冠疫情,可能需要用各種不同技術(shù)制成的疫苗。并非所有疫苗都要使用mRNA技術(shù)。
例如霍特茲的小組一直在研究的疫苗,采用的就是一種更為傳統(tǒng)的技術(shù),即腺病毒重組技術(shù)。
他說:“像其他團隊一樣,我們也開始合成這種新型的冠狀病毒。只是為了達到這一目的,不同的研究團隊用的是不同的技術(shù),mRNA或者腺病毒。而且每種技術(shù)各有利弊?!?/p>
對于輝瑞公司而言,一個更復雜的問題是,其疫苗的存儲需要極端低溫條件,約為零下70攝氏度。正是由于其疫苗中特殊的mRNA成分,如果冷凍得不徹底,就可能會分解。輝瑞公司甚至不得不想出定制一種特殊的高科技存儲運輸箱的方法來應對這一難題。
因此,盡管mRNA疫苗存在一些問題,但它們的快速性正是目前所需要的。下一個艱巨的挑戰(zhàn)是疫苗的分發(fā),還需要說服人們接種疫苗——在這場疫情之中,人們還會迎來其他許多前所未有的挑戰(zhàn)。(財富中文網(wǎng))
編譯:陳聰聰、楊二一
全球新冠疫情的命運幾何,很可能只由長度為幾百納米的生物積木所決定。
對于來自Moderna和輝瑞(Pfizer)及其合作伙伴BioNTech的兩種主要候選疫苗來說,mRNA是核心所在。這兩家公司的臨床試驗數(shù)據(jù)表明,其疫苗有效率均達到了95%左右。輝瑞公司的疫苗已經(jīng)在英國獲得批準,并可能在幾周內(nèi)開始分發(fā)給部分美國公民。
這場疫苗分發(fā)、全球免疫的挑戰(zhàn),在世界歷史上可謂前所未有。與這一挑戰(zhàn)同樣引人注目的是,在科學的引領和催化之下,疫苗在不到一年的時間里誕生——通常情況下,這一過程需要五年甚至更久。以輝瑞和Moderna的疫苗為例,兩家公司先進的技術(shù),讓擴大生產(chǎn)變得容易得多。
我們不禁要問,疫苗是如何制造出來的呢?學術(shù)機構(gòu)和制藥公司又是如何在新冠疫情期間如此迅速地取得成功的?
疫苗何以從病毒中“脫胎”而生
藥物從不會憑空產(chǎn)生。不管是治療用藥品,還是預防疾病的疫苗,藥物的創(chuàng)造、誕生都是充滿趣味的一個過程。而這一過程的第一步,就是對“生物敵人”進行徹底的檢查。
休斯頓貝勒醫(yī)學院國家熱帶醫(yī)學院(National School of Tropical Medicine at Houston’s Baylor College of Medicine)院長彼得?霍特茲說:“制造疫苗的第一步就是找出病原體的弱點,以確定疫苗進軍的目標?!?/p>
疫苗的基本作用是誘導免疫反應,通過身體產(chǎn)生抗體來攻擊抗原,達到保護身體免受病原體侵害的作用。所謂抗原,是指病原體產(chǎn)生免疫反應的組成部分。當真正的病毒來襲時,身體已經(jīng)“認識”了入侵者,可以快速調(diào)用它的抗體庫,以抵抗病原體襲擊。
許多普通疫苗本身含有少量的病毒或細菌。這些病毒或細菌在實驗室培養(yǎng)完成后被殺死,即使存活,活性也已大大削弱,致病可能性不大。
就新冠病毒而言,識別霍特茲所說的“病原體的弱點”是至關重要的第一步。在這過程中,一種叫做刺突蛋白的物質(zhì)格外兇險,同時也很關鍵。
“當說到冠狀病毒時,每個人都會想起這樣的病毒圖片,它有著一簇簇刺突蛋白,即從圓柱形病毒復合物上突出的紅色部分?!盨eyfarth Shaw LLP公司華盛頓特區(qū)辦公室的知識產(chǎn)業(yè)部成員迪恩?法內(nèi)利說。
“刺突蛋白”的作用和你想象中的刺突物體的作用完全一樣——刺穿其他東西。“這種刺突蛋白附著在人類細胞中的ACE2蛋白上,因此我們也就知道了這種病毒感染人類的方式?!狈▋?nèi)利補充說。
制藥企業(yè)知道,他們生產(chǎn)的疫苗必須“教會”人們的身體,去攻擊刺突蛋白上吸引抗體的抗原。但是輝瑞和Moderna的研發(fā)方式與傳統(tǒng)疫苗相比,二者截然不同。
制作mRNA疫苗
mRNA是一種強大的生物學工具。實際上,正是這種分子指導著細胞合成哪些物質(zhì),例如蛋白質(zhì)。
從理論上來說,這意味著人們可以利用mRNA將人體細胞轉(zhuǎn)變成微型的制藥工廠,生成抵抗各種疾病的物質(zhì)。但就在一年前,許多生物技術(shù)界人士都對使用mRNA技術(shù)來進行治療的方法提出了質(zhì)疑。
但在一眾疫苗中處于領先的mRNA疫苗采用的正是這種作用機制。今年早些時候,中國的科學家破譯了新冠病毒的基因密碼,并向全球公布。借助這一信息,制藥商已能明白應如何利用mRNA來迫使人體模仿新冠病毒這種特殊的蛋白結(jié)構(gòu),并誘導免疫反應。
本質(zhì)上,這種技術(shù)比傳統(tǒng)的疫苗制造過程落后了一步。使用mRNA技術(shù)生產(chǎn)疫苗的輝瑞/BioNTech和Moderna并沒有將病毒中能喚醒免疫系統(tǒng)的表面蛋白結(jié)構(gòu)直接注射到人體內(nèi),而是注射了帶有此類蛋白編碼的RNA。
菲爾?多米特澤(Phil Dormitzer)是RNA疫苗的堅定推廣者,也是輝瑞疫苗部門的副總裁兼首席科學官。
他說:“我已經(jīng)考慮RNA疫苗很久了。2018年,在我們與BioNTech一致同意啟動新的mRNA計劃后,便開始投入了這項進程?!边@項合作一開始的目的是想要開發(fā)基于mRNA的流感疫苗。但新冠疫情一爆發(fā),他們的研發(fā)重點就轉(zhuǎn)移了。
多米特澤列舉了他對這項技術(shù)充滿熱情的兩個具體原因:靈活性,以及快速投入大規(guī)模量產(chǎn)并擴大治療范圍的能力。他解釋說,使用RNA疫苗時,免疫反應可以同時產(chǎn)生抗體和另一種關鍵的免疫物質(zhì)——T細胞,這一點很重要,因為如果免疫系統(tǒng)中有兩種免疫物質(zhì),一種失效的話還有另一種可以互補,就可以更有效地抵抗新冠病毒。
當疫苗的生產(chǎn)規(guī)模必須大幅增加,以滿足在全球范圍內(nèi)分發(fā)的要求時,第二個原因尤其重要。
“我認為很多人都會傾向于使用mRNA,因為在一天之內(nèi)就可以制作出一條mRNA,對吧?”貝勒醫(yī)學院的霍特茲教授說?!岸矣行┕究梢酝ㄟ^外包的方式,為人們制作mRNA。”
與傳統(tǒng)的疫苗不同,mRNA技術(shù)不必花數(shù)月時間手動收集并提純病原體中的抗原,即可制成最終產(chǎn)品。人們可以簡單地使帶有指令的mRNA序列進入人體。之后,人體的細胞會自行完成繁重的免疫工作。
這就是為什么輝瑞和Moderna的疫苗可以超越競爭對手、率先進入審批環(huán)節(jié)的原因之一,并且得益于此,它們還有可能在2021年底之前,追加數(shù)億劑疫苗的生產(chǎn)。
新冠疫苗大軍
要想最終戰(zhàn)勝新冠疫情,可能需要用各種不同技術(shù)制成的疫苗。并非所有疫苗都要使用mRNA技術(shù)。
例如霍特茲的小組一直在研究的疫苗,采用的就是一種更為傳統(tǒng)的技術(shù),即腺病毒重組技術(shù)。
他說:“像其他團隊一樣,我們也開始合成這種新型的冠狀病毒。只是為了達到這一目的,不同的研究團隊用的是不同的技術(shù),mRNA或者腺病毒。而且每種技術(shù)各有利弊?!?/p>
對于輝瑞公司而言,一個更復雜的問題是,其疫苗的存儲需要極端低溫條件,約為零下70攝氏度。正是由于其疫苗中特殊的mRNA成分,如果冷凍得不徹底,就可能會分解。輝瑞公司甚至不得不想出定制一種特殊的高科技存儲運輸箱的方法來應對這一難題。
因此,盡管mRNA疫苗存在一些問題,但它們的快速性正是目前所需要的。下一個艱巨的挑戰(zhàn)是疫苗的分發(fā),還需要說服人們接種疫苗——在這場疫情之中,人們還會迎來其他許多前所未有的挑戰(zhàn)。(財富中文網(wǎng))
編譯:陳聰聰、楊二一
The fate of the COVID pandemic may well be dictated by a biological building block that’s just several hundred nanometers long.
Messenger RNA, or mRNA, is at the heart of both leading vaccine candidates, one from Moderna and the other from Pfizer and partner BioNTech. The companies’ clinical trial data suggest these vaccines are about 95% effective. And Pfizer’s vaccine, which has already received the green light in the U.K., may start being distributed to certain Americans in just a matter of weeks.
It will be a distribution challenge and an immunization campaign the likes of which the world has never seen. But as remarkable as that challenge will be, the science that led to the creation of promising vaccines in less than a year is equally remarkable—a process that usually takes about five years or more. And in the case of Pfizer’s and Moderna’s vaccines, their pioneering technologies could make it far easier to scale up the manufacturing process.
So how does a vaccine get made, anyway? And how did academic institutes and pharmaceutical companies pull it off so quickly in the midst of a pandemic?
How a virus births a vaccine
Drugs don’t just spring out of thin air. Creating one, whether it be a therapeutic meant to treat disease or a vaccine meant to prevent it, is a fascinating process which begins with a thorough examination of the biological foe in question.
“One of the first steps of making a vaccine is to identify the weak spot in the pathogen; to identify the vaccine target,” says Peter Hotez, dean for the National School of Tropical Medicine at Houston’s Baylor College of Medicine.
The basic role of a vaccine is to induce an immune response, which will then offer protection against a pathogen by forcing your body to create antibodies which attack antigens, the components of a pathogen that produce the immune response. So when the actual virus comes knocking, your body already recognizes the intruder and can deploy its antibody arsenal.
Many common vaccines contain little bits of the virus or bacteria itself that either have been killed after being grown in a lab or are live but greatly weakened and are therefore unlikely to get you sick.
In the case of the coronavirus, identifying the “weak spot” Hotez refers to was the crucial first step. It’s something rather sinisterly named the spike protein.
“When you think of the coronavirus, everyone’s seen the pictures of the virus that has the colored spike protein, that red bit that’s protruding off that cylindrical virus compound,” says Dean Fanelli, a partner in the intellectual property department of Seyfarth Shaw LLP’s Washington, D.C., offices.
That “spike protein” does exactly what you’d think a spiked object would do: It pierces something else. “The spike protein attaches to the ACE2 protein present in human cells. And so we know that’s how this virus actually infects people,” adds Fanelli.
The drugmakers knew they would have to teach the body to attack the antibody-attracting antigens on the spike protein. But the way in which Pfizer and Moderna went about that is very different from the traditional vaccine creation method.
Creating a COVID mRNA vaccine
Messenger RNA is a powerful biological tool. It’s the molecule that actually instructs your cells what to make, such as proteins.
Theoretically, that means you could harness mRNA to turn your body’s cells into mini drugmaking factories that can fight various diseases. As little as a year ago, large swaths of the biotech community were skeptical of using mRNA technology to make treatments.
But that’s just what the leading vaccine candidates have been able to accomplish. By leveraging the genetic code of the virus, which was made available globally by Chinese scientists earlier this year, drugmakers have been able to figure out how to use mRNA to force the body to mimic the spike protein and induce an immune response.
In essence, they go back one step from the traditional vaccine-making process. Rather than injecting the surface proteins that awaken the immune system directly into the body, Pfizer/BioNTech and Moderna are injecting the RNA which codes for such proteins.
One individual who’s been a decided RNA vaccine evangelist is Phil Dormitzer, who just happens to be the vice president and chief scientific officer of Pfizer’s viral vaccines unit.
“I’ve been thinking about RNA vaccines for a long time,” he says. “Things really came together in 2018 when we agreed with BioNTech to start the new mRNA program.” That collaboration began as a quest to develop an mRNA-based flu vaccine. The focus shifted once the pandemic hit.
Dormitzer cites two specific reasons he’s enthusiastic about the technology: flexibility and the capacity to rapidly manufacture and scale up treatments. He explains that with RNA vaccines an immune response could produce both antibodies and T cells, another key immune system warrior, which is important since one or the other might be more effective against COVID.
The second reason is particularly critical at a time when these vaccines must be scaled up on a massive level for worldwide distribution.
“I think a lot of people gravitate to mRNA because you can make a piece of mRNA in a day, right?” says Baylor’s Hotez. “And there are companies that you can contract out that will make the mRNA for you.”
Unlike more traditional vaccines, you don’t have to spend months upon months manually harvesting and purifying a pathogen’s antigens in order to make the final product. You can simply let the instruction-carrying mRNA sequences loose into the body. After that, the body’s cells do that heavy lifting all by themselves.
That’s one of the reasons why Pfizer’s and Moderna’s vaccines may have leapfrogged competitors on the regulatory front—and what may help them ramp up hundreds of millions of vaccine doses by the end of 2021.
An army of COVID vaccines
Ultimately conquering the coronavirus pandemic will likely require a motley crew of vaccines which use different technologies. Not everything is going to be an mRNA vaccine.
For instance, Hotez’s own group has been working on a COVID-19 vaccine which employs a far more traditional technology called recombinant adenovirus tech.
“We started making the new spike protein as did other groups,” he says. “It’s just that different groups are using different technologies to do it, whether it’s mRNA or adenovirus. And each of the technologies has strengths and weaknesses.”
For Pfizer, one of the more complex issues is the ultracold temperature its COVID vaccine requires for storage, about negative 70 degrees Celsius. That’s precisely because of the mRNA component of its specific vaccine, which could fall apart without being thoroughly frozen. Pfizer even had to come up with a special high-tech storage and transport case to deal with that exact dilemma.
So while mRNA vaccines present some problems, the quickness they provide is exactly what’s needed in this moment. Distributing the COVID vaccines and persuading people to get them will be the next daunting challenge—and there are still plenty of other pioneering projects to come during this pandemic.