為全球人口接種新冠病毒疫苗,這大概是人類在分配和物流上遇到的最大挑戰(zhàn)之一。因此,有些人希望人工智能和區(qū)塊鏈技術能夠協(xié)助完成這項任務。
IBM公司的區(qū)塊鏈業(yè)務主管杰森·凱利說:“這是在解決我們有史以來最大的數(shù)據(jù)難題。”
直到目前為止,這個難題的解決速度依然非常緩慢。
在美國,現(xiàn)在只有大約400萬人已經(jīng)接種了一劑以上的新冠疫苗,接種比例剛剛超過總人口的1%。而在全世界范圍內(nèi),疫苗的接種速度就更慢了,有些國家還沒有任何人接種疫苗。以色列算是目前接種率最高的國家,接種率也才剛剛達到12%。
新冠疫苗的分配,涉及到至少四個既獨立又有所關聯(lián)的問題:一是何時將多少疫苗運送到何地,這就涉及到需求預測的問題;二是要監(jiān)測分配網(wǎng)絡的瓶頸,這涉及供應鏈管理的問題;三是疫苗的生產(chǎn)商、分配方和接種者都需要確保這批疫苗是合法依規(guī)生產(chǎn)的,是滿足醫(yī)學標準的,劑量是沒有問題的,這就涉及品控的問題;最后還需要對接種者的不良反應進行監(jiān)測,這就涉及到后續(xù)跟蹤問效的問題。
無論是各國政府還是各大制藥公司,都希望可以在上述的每個步驟中使用到新技術。
低溫與高價
目前,美國和歐洲已經(jīng)批準了幾支疫苗上市,對這些地區(qū)來說,精確的需求預測是尤為重要的。因為這些疫苗必須在超低溫下保存,而且它們的價格也相對較高,對于政府來說,疫苗是浪費不起的。
有些公司正在幫助美國的醫(yī)院系統(tǒng)和各州政府對有限的疫苗資源作合理分配,IBM就是其中之一。
IBM的政府事務全球總經(jīng)理蒂姆·佩多斯表示,IBM正在使用該公司的沃森健康分析(Watson Health Analytics)軟件,將各地的人口統(tǒng)計學數(shù)據(jù)、公共衛(wèi)生狀況以及人們對疫苗的態(tài)度相結合,以預測各地對疫苗的需求,同時確保疫苗得到公平分配。
在發(fā)展中國家,需求預測和供應鏈管理方面的挑戰(zhàn)則更加嚴峻。
Macro-Eyes是位于西雅圖的一家人工智能公司,該公司由本·菲爾斯創(chuàng)辦,他以前曾經(jīng)用機器學習技術搞過金融市場數(shù)據(jù)分析,以尋找有利可圖的交易信號。
現(xiàn)在,他也在使用相同的技術來預測市場對藥品和其他醫(yī)療服務的需求。在這方面,該公司已經(jīng)與斯坦福大學的衛(wèi)生系統(tǒng)在美國展開合作,同時它在非洲也完成了幾個項目,包括幫助坦桑尼亞加強兒童的疫苗接種工作。
在非洲的幾個項目中,這家公司采用了大量的數(shù)據(jù),包括衛(wèi)星地圖、衛(wèi)星成像圖、某一地區(qū)的手機用戶數(shù)量、社交媒體上的帖子以及政府官方數(shù)據(jù)等等,以預測某一地區(qū)會有多少人會去就醫(yī)。每個數(shù)據(jù)集本身可能都是邊際值,但是通過匯總分析大量的數(shù)據(jù)集,Macro-Eyes就能夠做出準確的預測。
Macro-Eyes的系統(tǒng)可以將坦桑尼亞兒童疫苗接種需求的預測準確率提高96%,將疫苗浪費率下降至2.42%。
如今,Macro-Eyes也希望能夠在新冠疫苗的分配上,為各國政府,包括美國各州,做出同樣的貢獻。
菲爾斯指出,在疫苗分配上,效率是至關重要的,因為現(xiàn)在疫苗的需求遠遠大于供應,每一劑疫苗都很珍貴。而且有些疫苗的售價也比較高,大家是浪費不起的。很多地方還要操心冷藏的問題,盡管有些疫苗——比如阿斯利康的產(chǎn)品,也可以在普通冰箱里保存。
他說:“我們不能因為把一批疫苗送錯了地方,就把沒用完的30劑扔掉,這樣的錯誤是犯不起的。但如果我們嚴格按照人口分配疫苗,那么一些地區(qū)依然會面臨嚴重分配不足的問題,而另一些地區(qū)則會存在嚴重分配過剩的問題?!?/p>
區(qū)塊鏈和機器學習
一旦分配網(wǎng)絡建立并運行起來,就要密切關注它的運行情況,跟蹤疫苗在供應鏈中的流動。而這也是人工智能和區(qū)塊鏈等技術能夠發(fā)揮作用的另一個領域。
IBM公司推出了一款“基于對象”的供應鏈管理軟件,它可以近乎實時地追蹤每一針疫苗的位置,并將疫苗與接種者進行匹配。佩多斯表示,在新冠疫情爆發(fā)的早期階段,IBM就已經(jīng)使用該軟件追蹤個人防護器材的供應了。
Celonis是一家?guī)椭髽I(yè)追蹤實時業(yè)務流程的軟件公司,該公司也有一款追蹤個人防護器材供應鏈的軟件。它也希望這款軟件能夠用在疫苗分配中。
該軟件的機器學習機制可以用來預測分配中潛在的瓶頸問題,并且就如何繞過這些瓶頸給出建議。
美國的技術和業(yè)務流程外包公司Genpact也為制藥公司開發(fā)了一款軟件,用來幫助他們監(jiān)測各個批次的藥品在供應鏈中的流轉。
該公司的藥物安全負責人埃里克·桑德爾表示,新冠疫苗的監(jiān)測是很有挑戰(zhàn)的,因為不同批次的疫苗很可能是由不同的授權生產(chǎn)商在不同的藥廠里生產(chǎn)的,彼此之間可能存在差異。每批疫苗的存儲也會帶來額外的問題。而持續(xù)追蹤每個人接種的每一劑疫苗,對追蹤疫苗的安全性也是至關重要的。
此外還有另一個挑戰(zhàn)。這些供應鏈軟件大都是針對單個企業(yè)用戶設計的。但對于新冠疫苗來說,它的供應鏈有必要由多方共同監(jiān)測,包括制藥企業(yè)、物流企業(yè)、醫(yī)院、藥店以及政府的各個職能部門。
但這些企業(yè)和部門并非都在使用相同的軟件,其中有些企業(yè)彼此甚至是競爭關系,所以它們基本上不會愿意共享數(shù)據(jù),或者出于監(jiān)管、安全和合規(guī)方面的原因而不能分享數(shù)據(jù)。
對于這個問題,IBM公司的區(qū)塊鏈業(yè)務主管杰森·凱利認為,區(qū)塊鏈技術(也就是比特幣等數(shù)字貨幣的底層技術)恰恰在這方面大有可為。區(qū)塊鏈技術能夠為每一劑疫苗在供應鏈中的流轉留下安全可信的記錄,而且參與這個過程的每個部門和企業(yè)都可以使用。
凱利介紹道,IBM目前正在與幾家制藥公司討論建立基于區(qū)塊鏈技術的解決方案,以創(chuàng)建“一個最低限度可行的生態(tài)系統(tǒng)”來支持疫苗分配。
不良反應
一旦人們接種了疫苗,疫苗制造商和政府衛(wèi)生部門還需要監(jiān)測接種者是否出現(xiàn)不良反應或者是罕見并發(fā)癥。雖然在臨床試驗階段,疫苗已經(jīng)在幾萬人身上進行了測試,但有些異常反應很可能只有在接種了幾百萬人之后才會暴露出來。
很多地方的政府都要求,醫(yī)生和制藥公司需要對患者用藥后的所有異常癥狀進行報告。即便有些藥物只給很少的人使用,這些規(guī)定也會為各地帶來許多有關不良反應的報告。事實證明,這些異常癥狀絕大多數(shù)時候都是“假警報”,要么與藥物本身無關,要么實際上并無任何危險。但有的時候,它們也確實暴露了某些之前沒有被注意到的重大安全隱患。
現(xiàn)在需要接種新冠疫苗的人如此之多,這些報告的數(shù)量可能會非常龐大,大到我們完全審查不過來,無法及時從中發(fā)現(xiàn)隱患跡象。
因此,有些國家已經(jīng)在尋求人工智能技術的幫助。
英國衛(wèi)生監(jiān)管機構已經(jīng)與Genpact公司簽署合同,用機器學習軟件對那些“黃牌”報告進行篩查——也就是醫(yī)生和患者報告了異常不應反應,且有必要引起重視的報告。
Genpact研發(fā)的這個系統(tǒng)已經(jīng)于2020年12月上線,它能夠自動接收文本信息并進行編碼,然后搜索有可能涉及重大安全隱患的癥狀模式,并將其提交給監(jiān)管機構作進一步調查。
Genpact公司的首席執(zhí)行官泰格·塔加利安介紹道,這款軟件已經(jīng)接受了多種寫作訓練,既可以理解醫(yī)生在報告癥狀時所寫的專業(yè)術語,也能夠理解老百姓的通俗化表達。
Genpact之所以可以迅速部署這個系統(tǒng)(合同簽署后僅三個月,該系統(tǒng)便投入了使用),是因為Genpact公司以前就為制藥行業(yè)的客戶開發(fā)過更加復雜的類似系統(tǒng)。特別是在美國,因為美國食品與藥品管理局對藥品上市后的監(jiān)測報告制度有嚴格的要求,藥品的任何安全隱患都必須上報。
因此,Genpact的人工智能軟件不能像在英國那樣,僅僅篩查政府提供的表格,它還要篩查醫(yī)學期刊文章,甚至是社交媒體上的帖子,以尋找任何應該引起重視的不良反應線索。
有些技術專家也在感嘆,人工智能技術為何沒有在疫情期間幫上多大的忙。實際上,在疫情剛剛爆發(fā)時,一些人工智能軟件就已經(jīng)發(fā)出預警,指出一種令人擔憂的新型呼吸道病毒似乎正在流行,但人工智能技術顯然無力阻擋病毒的大流行。
人工智能技術對疫情的流行病學建模和政策制定也只起了微不足道的影響。另外,它對尋找治療方法和開發(fā)疫苗的幫助也較為有限。
因此,有人打趣說,等到下次爆發(fā)疫情的時候,人工智能技術或許就準備好了,不過不是這一次。不過在確保疫苗快速安全分發(fā)上,這項技術還是能夠證明其價值的。(財富中文網(wǎng))
譯者:樸成奎
為全球人口接種新冠病毒疫苗,這大概是人類在分配和物流上遇到的最大挑戰(zhàn)之一。因此,有些人希望人工智能和區(qū)塊鏈技術能夠協(xié)助完成這項任務。
IBM公司的區(qū)塊鏈業(yè)務主管杰森·凱利說:“這是在解決我們有史以來最大的數(shù)據(jù)難題?!?/p>
直到目前為止,這個難題的解決速度依然非常緩慢。
在美國,現(xiàn)在只有大約400萬人已經(jīng)接種了一劑以上的新冠疫苗,接種比例剛剛超過總人口的1%。而在全世界范圍內(nèi),疫苗的接種速度就更慢了,有些國家還沒有任何人接種疫苗。以色列算是目前接種率最高的國家,接種率也才剛剛達到12%。
新冠疫苗的分配,涉及到至少四個既獨立又有所關聯(lián)的問題:一是何時將多少疫苗運送到何地,這就涉及到需求預測的問題;二是要監(jiān)測分配網(wǎng)絡的瓶頸,這涉及供應鏈管理的問題;三是疫苗的生產(chǎn)商、分配方和接種者都需要確保這批疫苗是合法依規(guī)生產(chǎn)的,是滿足醫(yī)學標準的,劑量是沒有問題的,這就涉及品控的問題;最后還需要對接種者的不良反應進行監(jiān)測,這就涉及到后續(xù)跟蹤問效的問題。
無論是各國政府還是各大制藥公司,都希望可以在上述的每個步驟中使用到新技術。
低溫與高價
目前,美國和歐洲已經(jīng)批準了幾支疫苗上市,對這些地區(qū)來說,精確的需求預測是尤為重要的。因為這些疫苗必須在超低溫下保存,而且它們的價格也相對較高,對于政府來說,疫苗是浪費不起的。
有些公司正在幫助美國的醫(yī)院系統(tǒng)和各州政府對有限的疫苗資源作合理分配,IBM就是其中之一。
IBM的政府事務全球總經(jīng)理蒂姆·佩多斯表示,IBM正在使用該公司的沃森健康分析(Watson Health Analytics)軟件,將各地的人口統(tǒng)計學數(shù)據(jù)、公共衛(wèi)生狀況以及人們對疫苗的態(tài)度相結合,以預測各地對疫苗的需求,同時確保疫苗得到公平分配。
在發(fā)展中國家,需求預測和供應鏈管理方面的挑戰(zhàn)則更加嚴峻。
Macro-Eyes是位于西雅圖的一家人工智能公司,該公司由本·菲爾斯創(chuàng)辦,他以前曾經(jīng)用機器學習技術搞過金融市場數(shù)據(jù)分析,以尋找有利可圖的交易信號。
現(xiàn)在,他也在使用相同的技術來預測市場對藥品和其他醫(yī)療服務的需求。在這方面,該公司已經(jīng)與斯坦福大學的衛(wèi)生系統(tǒng)在美國展開合作,同時它在非洲也完成了幾個項目,包括幫助坦桑尼亞加強兒童的疫苗接種工作。
在非洲的幾個項目中,這家公司采用了大量的數(shù)據(jù),包括衛(wèi)星地圖、衛(wèi)星成像圖、某一地區(qū)的手機用戶數(shù)量、社交媒體上的帖子以及政府官方數(shù)據(jù)等等,以預測某一地區(qū)會有多少人會去就醫(yī)。每個數(shù)據(jù)集本身可能都是邊際值,但是通過匯總分析大量的數(shù)據(jù)集,Macro-Eyes就能夠做出準確的預測。
Macro-Eyes的系統(tǒng)可以將坦桑尼亞兒童疫苗接種需求的預測準確率提高96%,將疫苗浪費率下降至2.42%。
如今,Macro-Eyes也希望能夠在新冠疫苗的分配上,為各國政府,包括美國各州,做出同樣的貢獻。
菲爾斯指出,在疫苗分配上,效率是至關重要的,因為現(xiàn)在疫苗的需求遠遠大于供應,每一劑疫苗都很珍貴。而且有些疫苗的售價也比較高,大家是浪費不起的。很多地方還要操心冷藏的問題,盡管有些疫苗——比如阿斯利康的產(chǎn)品,也可以在普通冰箱里保存。
他說:“我們不能因為把一批疫苗送錯了地方,就把沒用完的30劑扔掉,這樣的錯誤是犯不起的。但如果我們嚴格按照人口分配疫苗,那么一些地區(qū)依然會面臨嚴重分配不足的問題,而另一些地區(qū)則會存在嚴重分配過剩的問題?!?/p>
區(qū)塊鏈和機器學習
一旦分配網(wǎng)絡建立并運行起來,就要密切關注它的運行情況,跟蹤疫苗在供應鏈中的流動。而這也是人工智能和區(qū)塊鏈等技術能夠發(fā)揮作用的另一個領域。
IBM公司推出了一款“基于對象”的供應鏈管理軟件,它可以近乎實時地追蹤每一針疫苗的位置,并將疫苗與接種者進行匹配。佩多斯表示,在新冠疫情爆發(fā)的早期階段,IBM就已經(jīng)使用該軟件追蹤個人防護器材的供應了。
Celonis是一家?guī)椭髽I(yè)追蹤實時業(yè)務流程的軟件公司,該公司也有一款追蹤個人防護器材供應鏈的軟件。它也希望這款軟件能夠用在疫苗分配中。
該軟件的機器學習機制可以用來預測分配中潛在的瓶頸問題,并且就如何繞過這些瓶頸給出建議。
美國的技術和業(yè)務流程外包公司Genpact也為制藥公司開發(fā)了一款軟件,用來幫助他們監(jiān)測各個批次的藥品在供應鏈中的流轉。
該公司的藥物安全負責人埃里克·桑德爾表示,新冠疫苗的監(jiān)測是很有挑戰(zhàn)的,因為不同批次的疫苗很可能是由不同的授權生產(chǎn)商在不同的藥廠里生產(chǎn)的,彼此之間可能存在差異。每批疫苗的存儲也會帶來額外的問題。而持續(xù)追蹤每個人接種的每一劑疫苗,對追蹤疫苗的安全性也是至關重要的。
此外還有另一個挑戰(zhàn)。這些供應鏈軟件大都是針對單個企業(yè)用戶設計的。但對于新冠疫苗來說,它的供應鏈有必要由多方共同監(jiān)測,包括制藥企業(yè)、物流企業(yè)、醫(yī)院、藥店以及政府的各個職能部門。
但這些企業(yè)和部門并非都在使用相同的軟件,其中有些企業(yè)彼此甚至是競爭關系,所以它們基本上不會愿意共享數(shù)據(jù),或者出于監(jiān)管、安全和合規(guī)方面的原因而不能分享數(shù)據(jù)。
對于這個問題,IBM公司的區(qū)塊鏈業(yè)務主管杰森·凱利認為,區(qū)塊鏈技術(也就是比特幣等數(shù)字貨幣的底層技術)恰恰在這方面大有可為。區(qū)塊鏈技術能夠為每一劑疫苗在供應鏈中的流轉留下安全可信的記錄,而且參與這個過程的每個部門和企業(yè)都可以使用。
凱利介紹道,IBM目前正在與幾家制藥公司討論建立基于區(qū)塊鏈技術的解決方案,以創(chuàng)建“一個最低限度可行的生態(tài)系統(tǒng)”來支持疫苗分配。
不良反應
一旦人們接種了疫苗,疫苗制造商和政府衛(wèi)生部門還需要監(jiān)測接種者是否出現(xiàn)不良反應或者是罕見并發(fā)癥。雖然在臨床試驗階段,疫苗已經(jīng)在幾萬人身上進行了測試,但有些異常反應很可能只有在接種了幾百萬人之后才會暴露出來。
很多地方的政府都要求,醫(yī)生和制藥公司需要對患者用藥后的所有異常癥狀進行報告。即便有些藥物只給很少的人使用,這些規(guī)定也會為各地帶來許多有關不良反應的報告。事實證明,這些異常癥狀絕大多數(shù)時候都是“假警報”,要么與藥物本身無關,要么實際上并無任何危險。但有的時候,它們也確實暴露了某些之前沒有被注意到的重大安全隱患。
現(xiàn)在需要接種新冠疫苗的人如此之多,這些報告的數(shù)量可能會非常龐大,大到我們完全審查不過來,無法及時從中發(fā)現(xiàn)隱患跡象。
因此,有些國家已經(jīng)在尋求人工智能技術的幫助。
英國衛(wèi)生監(jiān)管機構已經(jīng)與Genpact公司簽署合同,用機器學習軟件對那些“黃牌”報告進行篩查——也就是醫(yī)生和患者報告了異常不應反應,且有必要引起重視的報告。
Genpact研發(fā)的這個系統(tǒng)已經(jīng)于2020年12月上線,它能夠自動接收文本信息并進行編碼,然后搜索有可能涉及重大安全隱患的癥狀模式,并將其提交給監(jiān)管機構作進一步調查。
Genpact公司的首席執(zhí)行官泰格·塔加利安介紹道,這款軟件已經(jīng)接受了多種寫作訓練,既可以理解醫(yī)生在報告癥狀時所寫的專業(yè)術語,也能夠理解老百姓的通俗化表達。
Genpact之所以可以迅速部署這個系統(tǒng)(合同簽署后僅三個月,該系統(tǒng)便投入了使用),是因為Genpact公司以前就為制藥行業(yè)的客戶開發(fā)過更加復雜的類似系統(tǒng)。特別是在美國,因為美國食品與藥品管理局對藥品上市后的監(jiān)測報告制度有嚴格的要求,藥品的任何安全隱患都必須上報。
因此,Genpact的人工智能軟件不能像在英國那樣,僅僅篩查政府提供的表格,它還要篩查醫(yī)學期刊文章,甚至是社交媒體上的帖子,以尋找任何應該引起重視的不良反應線索。
有些技術專家也在感嘆,人工智能技術為何沒有在疫情期間幫上多大的忙。實際上,在疫情剛剛爆發(fā)時,一些人工智能軟件就已經(jīng)發(fā)出預警,指出一種令人擔憂的新型呼吸道病毒似乎正在流行,但人工智能技術顯然無力阻擋病毒的大流行。
人工智能技術對疫情的流行病學建模和政策制定也只起了微不足道的影響。另外,它對尋找治療方法和開發(fā)疫苗的幫助也較為有限。
因此,有人打趣說,等到下次爆發(fā)疫情的時候,人工智能技術或許就準備好了,不過不是這一次。不過在確保疫苗快速安全分發(fā)上,這項技術還是能夠證明其價值的。(財富中文網(wǎng))
譯者:樸成奎
Vaccinating the global population against COVID-19 is one of the most immense distribution and logistical challenges humanity has ever faced. Some are hoping that artificial intelligence and blockchain technology can help with the task.
“This is about trying to solve the biggest data puzzle of our lifetime,” says Jason Kelley, who heads blockchain services for IBM.
So far, solving that puzzle has proved painstakingly slow. Only about 4 million people in the U.S.—just over 1% of the population—have received at least one dose of a COVID-19 vaccine. Worldwide, the progress is even more sluggish, with some countries yet to vaccinate any of their citizens. Even Israel, which has vaccinated the largest portion of its population so far, has given first jabs to just 12%.
The distribution of the COVID vaccine involves at least four separate but related problems: how much vaccine to ship where and when. That’s demand forecasting. Then that distribution network needs to be monitored for bottlenecks. That’s supply chain management. Furthermore, the pharmaceutical companies making the vaccine, those administering it, and people receiving it all need assurance that the batch of vaccine is legitimate and made to the correct standard, and that the right dose is administered. That’s quality assurance. Finally, those receiving the vaccine need to be monitored for any unusual side effects. That’s adverse event surveillance.
Governments and companies are hoping to use new technologies in each of these steps.
Low temps and high prices
Accurately forecasting demand for the vaccine is particularly important for some of the first vaccines that have been approved for use in the U.S. and Europe because of the ultralow temperatures at which they must be kept and their relatively high prices. Governments can’t afford to let doses go to waste.
IBM is among the companies trying to help U.S. hospitals and state governments manage the limited supplies of vaccines available so far, according to Tim Paydos, the company’s global general manager for government industry. This involves using IBM’s Watson Health Analytics software to marry zip-code–level data on demographics and health status with information on people’s attitudes toward vaccinations to try to forecast demand and also ensure vaccines are distributed equitably, he says.
In the developing world, the challenge of demand forecasting and supply chain management is even more acute. Macro-Eyes is an A.I. company based in Seattle. It was founded by Ben Fels, who had once used machine learning to scour financial market data for minute trading signals. Today, he uses similar technology to look for indicators that will enable Macro-Eyes to forecast demand for medicines and other health care offerings. On this front, the company has worked with Stanford University’s health system in the U.S., but it has completed several projects in Africa, including one to bolster childhood immunizations in Tanzania.
In its African projects, the company uses a wide range of data—including satellite imagery and maps, the number of mobile phone users in a certain area, social media posts, and official government data—to try to predict how many people will show up for health care at any one place. Each data set on its own may be of marginal value. But by combining lots of data sets, Macro-Eyes is able to make accurate predictions.
Macro-Eyes’ system was able to improve forecasts for childhood vaccination demand in Tanzania by 96% and reduce wasted dosages to just 2.42 vials per 100 shipped. Now Macro-Eyes is hoping to help governments around the world—including possibly some U.S. states—do something similar with COVID-19 vaccines.
Ensuring efficiency is even more important with these vaccines, Fels says, since demand far exceeds supply, making each dose precious. Some of the vaccines are also relatively expensive per dose, making waste costly. Concerns about cold storage will be an issue in many places, even with vaccines such as AstraZeneca’s that can be kept at normal refrigerator temperatures. “We can’t afford to throw away 30 doses because we sent them to the wrong place,” Fels says. “But if we allocate the vaccine strictly according to population we are going to severely under-allocate to some sites and severely over-allocate to others.”
Blockchain and machine learning
Once a distribution network is up and running, keeping tabs on how it is functioning and tracking doses as they move through the supply chain is another area where A.I. and technologies such as blockchain may play a role.
IBM markets “object-based” supply chain management software that can track the location of every vaccine vial in as near real time as possible and match the vial to the people vaccinated with the doses contained in that vial. It had already used this software earlier in the pandemic to help track supplies of personal protective equipment, Paydos says.
Celonis, another software company that helps businesses build dashboards to track business processes in real time, has also seen its software used to track PPE for health system customers and is now hoping that it can be adopted to handle vaccines too.
Building on top of this software, machine learning can be used to predict potential distribution bottlenecks and to potentially suggest ways to work around them. Genpact, the U.S.-based technology and business process outsourcing firm, has developed software for its pharmaceutical industry customers that helps them track batches of drugs as they move through a supply chain. The COVID-19 vaccines will be particularly challenging, says Eric Sandor, the head of Genpact’s pharmacovigilance A.I. business, because different batches may be produced by different contract manufacturers at different facilities, resulting in variations among them, and there may be further issues around the storage of individual lots of vials from within each batch. Keeping track of exactly which lot and batch was used to vaccinate each individual may be critical to tracking any safety issues with the vaccine, Sandor says.
There’s another challenge too: Most of these supply chain software packages were designed to be used within a single organization. But with the COVID-19 vaccines, there is a need to track supplies through a chain that is controlled by many different parties—drug manufacturers, courier companies, hospitals and pharmacies, and even various branches of government—which don’t all use the same software. What’s more, some of these companies may be competitors that are generally reluctant to share data, or they may be unable to share data easily owing to regulatory, security, and compliance concerns.
That’s where IBM’s Kelley thinks blockchain technology, the digital ledger system that underpins cryptocurrencies such as Bitcoin, can play a vital role. This kind of digital ledger could provide a trusted, secure, and verifiable record of the chain of custody for every vial of vaccine that could be used by every organization involved in the process, he says. IBM is currently in discussions with several drug manufacturers about signing up for this blockchain-based solution in order to create “a minimally viable ecosystem” to launch it, he says.
Side effects
Once people have received inoculations, the vaccine makers and government health agencies will need to monitor these people for signs of unusual side effects or rare complications. While the vaccines have been tested on tens of thousands of people during clinical trials, there may be side effects or safety issues that only become apparent when millions receive injections. Many governments require doctors and pharmaceutical companies to file reports for any unusual symptoms patients experience after being given a drug. Even for medicines given to far smaller numbers of people, these rules can result in a large number of “adverse event” reports being submitted. The vast majority of these usually end up being false alarms, with the symptoms either unrelated to the drug in question or not an indication of any danger. But sometimes they do point to a critical safety issue that wasn’t picked up previously. Because the COVID-19 vaccine is being given to so many people, the volume of these reports is likely to be massive—far too many for humans to review fast enough to pick up any signs of a serious problem before it’s too late.
That’s why some governments are turning to A.I. to help. The British health regulator has contracted with Genpact to deploy machine learning software that can screen its official “yellow card” reports—which doctors and patients use to report unusual side effects that could be a cause for concern. The system Genpact built, which went live in December, takes in plain text, automatically codifies it, and searches for patterns that could be indicative of an emerging safety issue, flagging this to the regulator for further investigation, Sandor says.
Tiger Tyagarajan, Genpact’s chief executive officer, says the software has been trained on many different types of writing, so that it can understand both the medical terminology a doctor might use in reporting symptoms as well as the more colloquial expressions a member of the public might use. He says Genpact was only able to deploy this system quickly—it was up and running three months after Genpact received the contract—because the company had already built even more sophisticated versions of it for its pharmaceutical industry customers, particularly in the U.S. where the Food and Drug Administration requires stringent post-approval surveillance and reporting of any safety concerns with a medicine. In those cases, Genpact’s A.I. software doesn’t just look at a single government form, as it is doing in the U.K., it also scans medical journal articles and even social media posts for evidence of unusual symptoms that could be a cause for concern.
Some technologists have lamented that A.I. hasn’t been a big help during the pandemic. While some A.I. software helped sound early warnings that a worrisome new respiratory virus seemed to be circulating, the technology certainly didn’t help prevent the pandemic. And its impact on epidemiological modeling and policymaking has been minimal. It’s had limited impact in the quest to find COVID-19 treatments and develop vaccines.
Some have quipped that A.I. would be ready to combat the next pandemic, but not this one. Still, in helping to ensure that vaccines are distributed quickly and safely, the technology may yet prove its worth.