工業(yè)巨頭霍尼韋爾和其最近收購的一家英國軟件公司——?jiǎng)蛄孔佑?jì)算(Cambridge Quantum Computing)宣布在量子計(jì)算性能方面實(shí)現(xiàn)了三次大飛躍。
這些聲明旨在表明,霍尼韋爾已經(jīng)在一定程度上成為新興量子計(jì)算領(lǐng)域的領(lǐng)導(dǎo)者,而該領(lǐng)域此前一直由谷歌和IBM等消費(fèi)者更為熟悉的大型科技公司主導(dǎo)?;裟犴f爾的量子計(jì)算機(jī)能夠通過微軟的Azure云計(jì)算平臺(tái)訪問,不過微軟也在研發(fā)自家量子計(jì)算硬件,只是還沒有完善。據(jù)報(bào)道,亞馬遜也正在組建團(tuán)隊(duì),以建造自研量子硬件。
此外,7月21日的這份聲明還意在展示霍尼韋爾的量子部門與劍橋量子計(jì)算的合并前景。前者專注于量子硬件,后者則專注于量子計(jì)算機(jī)的軟件。今年6月,兩家公司宣布合并,合并后的公司將從霍尼韋爾剝離出來,成為一家獨(dú)立的公司。
霍尼韋爾將仍然持有新公司55%的股權(quán)并將有權(quán)使用其技術(shù),但新公司將有能力從外部尋求更多的資金。
實(shí)時(shí)校正
霍尼韋爾的量子計(jì)算部門——霍尼韋爾量子解決方案的研究人員證明,計(jì)算機(jī)可以實(shí)時(shí)糾正目前量子計(jì)算機(jī)在計(jì)算中可能出現(xiàn)的錯(cuò)誤,并且在錯(cuò)誤出現(xiàn)時(shí)發(fā)現(xiàn)和糾正。這是對先前技術(shù)的一個(gè)改進(jìn),在以前,這些錯(cuò)誤只能夠在計(jì)算完成后才被發(fā)現(xiàn)和校正,而這可能會(huì)導(dǎo)致處理時(shí)間更長。
計(jì)算中出現(xiàn)的錯(cuò)誤是目前阻礙量子計(jì)算在現(xiàn)實(shí)世界應(yīng)用的因素之一?;裟犴f爾將10個(gè)物理量子位(量子計(jì)算機(jī)中執(zhí)行計(jì)算的部分)中的7個(gè)組合在一起,形成了一個(gè)計(jì)算單元,即所謂的“邏輯量子位”,從而實(shí)現(xiàn)了實(shí)時(shí)誤差校正。
“大型企業(yè)級問題需要精確以及錯(cuò)誤修正的邏輯量子位元來校正和縮小。”霍尼韋爾量子解決方案的負(fù)責(zé)人托尼?阿特利在一份聲明中說。
霍尼韋爾還表示,公司目前已經(jīng)實(shí)現(xiàn)了1024個(gè)量子體積,這是今年3月公布的紀(jì)錄的兩倍。量子體積是一種考慮了幾個(gè)不同變量的性能刻度。去年10月,初創(chuàng)公司IonQ推出了一款量子計(jì)算機(jī),采用了與霍尼韋爾類似的底層捕獲離子技術(shù),據(jù)稱其“預(yù)計(jì)量子體積”達(dá)到了400萬。IonQ還表示,其認(rèn)為IBM在2016年首次發(fā)布的這個(gè)基準(zhǔn)指標(biāo)可能無法持續(xù)很久,因?yàn)榈讓佑布愋椭g存在差異。
以少抵多
這份聲明的最后,劍橋量子計(jì)算宣布,他們在算法上取得了進(jìn)展,可以用較少的量子位(量子計(jì)算機(jī)的邏輯處理部分)來解決復(fù)雜的優(yōu)化問題。今天的量子計(jì)算機(jī)通常只有幾十個(gè)這樣的量子位,而與之相比,在今天的標(biāo)準(zhǔn)計(jì)算機(jī)芯片上有數(shù)十億個(gè)開關(guān)——所以能夠用更少的量子位做更多的事情,對現(xiàn)實(shí)世界的應(yīng)用來說相當(dāng)重要。同時(shí),這些優(yōu)化問題也往往在商業(yè)世界的“數(shù)學(xué)題”中涌現(xiàn),比如快遞員送貨的最優(yōu)路線、金融投資組合中平衡風(fēng)險(xiǎn)和收益的最優(yōu)方式、工廠設(shè)備的最高效運(yùn)行方式,以及減少維護(hù)性停工的最好辦法等等。
這家初創(chuàng)公司認(rèn)為,新的辦法可以將解決部分復(fù)雜優(yōu)化問題的時(shí)間縮短到原來的100倍?!案斓牧孔铀惴軌?qū)γ媾R復(fù)雜優(yōu)化問題的各行各業(yè)產(chǎn)生深遠(yuǎn)的影響。”劍橋量子計(jì)算的創(chuàng)始人及首席執(zhí)行官伊利亞斯?汗在一份新聞稿中說。他還提及了鋼鐵制造這一領(lǐng)域,量子算法可以讓制造工藝更高效、更節(jié)省成本。
同時(shí),量子計(jì)算正在穩(wěn)步進(jìn)軍商業(yè)應(yīng)用領(lǐng)域。從高盛到博世,數(shù)十家公司已經(jīng)建立了依賴通過云計(jì)算平臺(tái)訪問量子計(jì)算機(jī)的試點(diǎn)項(xiàng)目。還有更多的公司在使用受量子計(jì)算技術(shù)啟發(fā)的算法,但這些算法仍然在標(biāo)準(zhǔn)硬件上運(yùn)行。
量子計(jì)算機(jī)利用量子物理中的現(xiàn)象來進(jìn)行計(jì)算。例如,在標(biāo)準(zhǔn)計(jì)算機(jī)中,信息是由一個(gè)名為“位”的二進(jìn)制單位表示的,這個(gè)二進(jìn)制單位只能夠是0或者1;而在量子計(jì)算機(jī)中,信息由一個(gè)量子位表示,這個(gè)量子位可以同時(shí)是0和1。在標(biāo)準(zhǔn)計(jì)算機(jī)中,每一位是獨(dú)立于其他每一位的;而在量子計(jì)算機(jī)中,每個(gè)量子位的狀態(tài)可能會(huì)影響其他量子位的狀態(tài)。這兩種特性被稱為疊加和糾纏,因此從理論上講,量子計(jì)算機(jī)比現(xiàn)有的數(shù)字計(jì)算機(jī)(計(jì)算機(jī)科學(xué)家通常稱其為“經(jīng)典計(jì)算機(jī)”)具有指數(shù)級的處理能力。
此外還有其他不同之處:今天的數(shù)字計(jì)算機(jī)幾乎都在由半導(dǎo)體構(gòu)成的類似邏輯電路上運(yùn)行,而量子計(jì)算機(jī)中的量子位能夠通過多種不同的方式工作。比如,IBM和谷歌的量子計(jì)算機(jī)通過在極低溫度下使用超導(dǎo)材料創(chuàng)建電路來工作;微軟一直在嘗試用超導(dǎo)和半導(dǎo)體材料相結(jié)合的量子位創(chuàng)造量子計(jì)算機(jī);霍尼韋爾的計(jì)算機(jī)則采用了一種完全不同的方法,即依靠向材料發(fā)射激光來捕獲離子。
目前的問題是,很難讓量子位長時(shí)間處于量子狀態(tài),對捕獲的離子量子位來說,最多只可以持續(xù)一分鐘,而對于大多數(shù)其他超導(dǎo)電路來說,只有幾分之一秒。當(dāng)這些量子位脫離量子狀態(tài)時(shí),錯(cuò)誤就會(huì)在計(jì)算中堆積起來。這些錯(cuò)誤的存在,以及研究人員還沒有弄清楚如何制造出量子位數(shù)量接近標(biāo)準(zhǔn)數(shù)字計(jì)算機(jī)邏輯門數(shù)量的芯片這一問題,意味著在大多數(shù)情況下,今天的量子計(jì)算機(jī)仍然不如大多數(shù)筆記本電腦高效、有用。這是正確的,除了一小部分非常困難的問題(許多問題與量子物理本身有關(guān))之外,量子計(jì)算機(jī)是得到答案的唯一可證明的方法。(財(cái)富中文網(wǎng))
編譯:楊二一
工業(yè)巨頭霍尼韋爾和其最近收購的一家英國軟件公司——?jiǎng)蛄孔佑?jì)算(Cambridge Quantum Computing)宣布在量子計(jì)算性能方面實(shí)現(xiàn)了三次大飛躍。
這些聲明旨在表明,霍尼韋爾已經(jīng)在一定程度上成為新興量子計(jì)算領(lǐng)域的領(lǐng)導(dǎo)者,而該領(lǐng)域此前一直由谷歌和IBM等消費(fèi)者更為熟悉的大型科技公司主導(dǎo)。霍尼韋爾的量子計(jì)算機(jī)能夠通過微軟的Azure云計(jì)算平臺(tái)訪問,不過微軟也在研發(fā)自家量子計(jì)算硬件,只是還沒有完善。據(jù)報(bào)道,亞馬遜也正在組建團(tuán)隊(duì),以建造自研量子硬件。
此外,7月21日的這份聲明還意在展示霍尼韋爾的量子部門與劍橋量子計(jì)算的合并前景。前者專注于量子硬件,后者則專注于量子計(jì)算機(jī)的軟件。今年6月,兩家公司宣布合并,合并后的公司將從霍尼韋爾剝離出來,成為一家獨(dú)立的公司。
霍尼韋爾將仍然持有新公司55%的股權(quán)并將有權(quán)使用其技術(shù),但新公司將有能力從外部尋求更多的資金。
實(shí)時(shí)校正
霍尼韋爾的量子計(jì)算部門——霍尼韋爾量子解決方案的研究人員證明,計(jì)算機(jī)可以實(shí)時(shí)糾正目前量子計(jì)算機(jī)在計(jì)算中可能出現(xiàn)的錯(cuò)誤,并且在錯(cuò)誤出現(xiàn)時(shí)發(fā)現(xiàn)和糾正。這是對先前技術(shù)的一個(gè)改進(jìn),在以前,這些錯(cuò)誤只能夠在計(jì)算完成后才被發(fā)現(xiàn)和校正,而這可能會(huì)導(dǎo)致處理時(shí)間更長。
計(jì)算中出現(xiàn)的錯(cuò)誤是目前阻礙量子計(jì)算在現(xiàn)實(shí)世界應(yīng)用的因素之一?;裟犴f爾將10個(gè)物理量子位(量子計(jì)算機(jī)中執(zhí)行計(jì)算的部分)中的7個(gè)組合在一起,形成了一個(gè)計(jì)算單元,即所謂的“邏輯量子位”,從而實(shí)現(xiàn)了實(shí)時(shí)誤差校正。
“大型企業(yè)級問題需要精確以及錯(cuò)誤修正的邏輯量子位元來校正和縮小。”霍尼韋爾量子解決方案的負(fù)責(zé)人托尼?阿特利在一份聲明中說。
霍尼韋爾還表示,公司目前已經(jīng)實(shí)現(xiàn)了1024個(gè)量子體積,這是今年3月公布的紀(jì)錄的兩倍。量子體積是一種考慮了幾個(gè)不同變量的性能刻度。去年10月,初創(chuàng)公司IonQ推出了一款量子計(jì)算機(jī),采用了與霍尼韋爾類似的底層捕獲離子技術(shù),據(jù)稱其“預(yù)計(jì)量子體積”達(dá)到了400萬。IonQ還表示,其認(rèn)為IBM在2016年首次發(fā)布的這個(gè)基準(zhǔn)指標(biāo)可能無法持續(xù)很久,因?yàn)榈讓佑布愋椭g存在差異。
以少抵多
這份聲明的最后,劍橋量子計(jì)算宣布,他們在算法上取得了進(jìn)展,可以用較少的量子位(量子計(jì)算機(jī)的邏輯處理部分)來解決復(fù)雜的優(yōu)化問題。今天的量子計(jì)算機(jī)通常只有幾十個(gè)這樣的量子位,而與之相比,在今天的標(biāo)準(zhǔn)計(jì)算機(jī)芯片上有數(shù)十億個(gè)開關(guān)——所以能夠用更少的量子位做更多的事情,對現(xiàn)實(shí)世界的應(yīng)用來說相當(dāng)重要。同時(shí),這些優(yōu)化問題也往往在商業(yè)世界的“數(shù)學(xué)題”中涌現(xiàn),比如快遞員送貨的最優(yōu)路線、金融投資組合中平衡風(fēng)險(xiǎn)和收益的最優(yōu)方式、工廠設(shè)備的最高效運(yùn)行方式,以及減少維護(hù)性停工的最好辦法等等。
這家初創(chuàng)公司認(rèn)為,新的辦法可以將解決部分復(fù)雜優(yōu)化問題的時(shí)間縮短到原來的100倍?!案斓牧孔铀惴軌?qū)γ媾R復(fù)雜優(yōu)化問題的各行各業(yè)產(chǎn)生深遠(yuǎn)的影響?!眲蛄孔佑?jì)算的創(chuàng)始人及首席執(zhí)行官伊利亞斯?汗在一份新聞稿中說。他還提及了鋼鐵制造這一領(lǐng)域,量子算法可以讓制造工藝更高效、更節(jié)省成本。
同時(shí),量子計(jì)算正在穩(wěn)步進(jìn)軍商業(yè)應(yīng)用領(lǐng)域。從高盛到博世,數(shù)十家公司已經(jīng)建立了依賴通過云計(jì)算平臺(tái)訪問量子計(jì)算機(jī)的試點(diǎn)項(xiàng)目。還有更多的公司在使用受量子計(jì)算技術(shù)啟發(fā)的算法,但這些算法仍然在標(biāo)準(zhǔn)硬件上運(yùn)行。
量子計(jì)算機(jī)利用量子物理中的現(xiàn)象來進(jìn)行計(jì)算。例如,在標(biāo)準(zhǔn)計(jì)算機(jī)中,信息是由一個(gè)名為“位”的二進(jìn)制單位表示的,這個(gè)二進(jìn)制單位只能夠是0或者1;而在量子計(jì)算機(jī)中,信息由一個(gè)量子位表示,這個(gè)量子位可以同時(shí)是0和1。在標(biāo)準(zhǔn)計(jì)算機(jī)中,每一位是獨(dú)立于其他每一位的;而在量子計(jì)算機(jī)中,每個(gè)量子位的狀態(tài)可能會(huì)影響其他量子位的狀態(tài)。這兩種特性被稱為疊加和糾纏,因此從理論上講,量子計(jì)算機(jī)比現(xiàn)有的數(shù)字計(jì)算機(jī)(計(jì)算機(jī)科學(xué)家通常稱其為“經(jīng)典計(jì)算機(jī)”)具有指數(shù)級的處理能力。
此外還有其他不同之處:今天的數(shù)字計(jì)算機(jī)幾乎都在由半導(dǎo)體構(gòu)成的類似邏輯電路上運(yùn)行,而量子計(jì)算機(jī)中的量子位能夠通過多種不同的方式工作。比如,IBM和谷歌的量子計(jì)算機(jī)通過在極低溫度下使用超導(dǎo)材料創(chuàng)建電路來工作;微軟一直在嘗試用超導(dǎo)和半導(dǎo)體材料相結(jié)合的量子位創(chuàng)造量子計(jì)算機(jī);霍尼韋爾的計(jì)算機(jī)則采用了一種完全不同的方法,即依靠向材料發(fā)射激光來捕獲離子。
目前的問題是,很難讓量子位長時(shí)間處于量子狀態(tài),對捕獲的離子量子位來說,最多只可以持續(xù)一分鐘,而對于大多數(shù)其他超導(dǎo)電路來說,只有幾分之一秒。當(dāng)這些量子位脫離量子狀態(tài)時(shí),錯(cuò)誤就會(huì)在計(jì)算中堆積起來。這些錯(cuò)誤的存在,以及研究人員還沒有弄清楚如何制造出量子位數(shù)量接近標(biāo)準(zhǔn)數(shù)字計(jì)算機(jī)邏輯門數(shù)量的芯片這一問題,意味著在大多數(shù)情況下,今天的量子計(jì)算機(jī)仍然不如大多數(shù)筆記本電腦高效、有用。這是正確的,除了一小部分非常困難的問題(許多問題與量子物理本身有關(guān))之外,量子計(jì)算機(jī)是得到答案的唯一可證明的方法。(財(cái)富中文網(wǎng))
編譯:楊二一
Industrial giant Honeywell and Cambridge Quantum Computing, a British software company Honeywell recently acquired, have announced a trio of big leaps forward in quantum computing performance.
The announcements were intended to show the extent to which Honeywell has emerged as a leader in the nascent quantum computing field, which has otherwise been dominated by big technology companies that are better known to consumers, such as Google and IBM. Honeywell’s quantum computer can be accessed through Microsoft’s Azure cloud-computing platform, although Microsoft has also been working on its own quantum computing hardware, which it has yet to perfect. Amazon is also reportedly assembling a team to build its own quantum hardware too.
July 21's announcement was also meant to showcase the promise of the merger of Honeywell’s quantum division, which has focused on quantum hardware, with Cambridge Quantum Computing, which has focused on software for quantum computers. In June, the two companies announced the combination and that the merged company would be spun out from Honeywell as a stand-alone corporation.
Honeywell will still own 55% of the new company and have the rights to use its technology, but the corporation will have the ability to raise additional outside financing.
Real-time corrections
Researchers at Honeywell Quantum Solutions, the company’s quantum computing division, demonstrated that it could correct in real time the errors that tend to creep into the calculations of today’s quantum computers, finding and correcting the mistakes as they occur. This is an advance on previous methods, in which such errors could only be spotted and corrected once a calculation had finished running, which made for potentially much slower processing times.
Errors are one of the things that is currently holding back many real-world applications of quantum computing. Honeywell managed to achieve its real-time error correction by yoking together seven of the 10 physical qubits—the parts of a quantum computer that perform calculations—to form a single calculating unit, known as a “l(fā)ogical qubit.”
“Big enterprise-level problems require precision and error-corrected logical qubits to scale successfully,” Tony Uttley, president of Honeywell Quantum Solutions, said in a statement.
Honeywell also said it had achieved a quantum volume of 1,024, doubling its previous record announced just in March. Quantum volume is a measure of performance that takes into account several different variables. Startup IonQ unveiled a quantum computer using an underlying trapped-ion technology similar to Honeywell’s in October that it said had an “expected quantum volume” of 4 million. IonQ also said it thought the benchmark metric, which was first promulgated by IBM in 2016, might not be useful for much longer because of differences between underlying hardware types.
More with less
Finally, Cambridge Quantum Computing announced that it had made an algorithmic advance that makes it possible to solve complex optimization problems using few qubits, which are the logical processing parts of a quantum computer. Today’s quantum computers often have just a few dozen of these qubits, compared to the billions of switches in today’s standard computer chips, so being able to do more with a fewer number of qubits is important for real-world applications. Optimization problems are also the sort of mathematical problem that pop up frequently in business, whether it is trying to find the most efficient route for a delivery courier, the best way to balance risk and reward in a financial portfolio, or the best way to run factory equipment quickly and reduce maintenance stoppages.
The startup said its methods could speed up the time it would take to solve some complex optimization problems by up to a factor of 100. “Faster quantum algorithms can have a profound impact on a variety of industries that face complicated optimization problems,” Ilyas Khan, the founder and chief executive officer of Cambridge Quantum Computing, said in a press release. He mentioned steel manufacturing as an area where quantum algorithms could help make manufacturing processes more efficient and cost-effective.
Quantum computing is making steady inroads into commercial applications. Dozens of companies, from Goldman Sachs to Bosch, have set up pilot projects that rely on access to quantum computers accessed through cloud-computing platforms. More still are using algorithms inspired by quantum computing techniques, but which run on standard hardware.
Quantum computers use phenomenon from quantum physics to make their calculations. For instance, while in a standard computer, information is represented by a binary unit called a bit, that can be either a 0 or 1. In a quantum computer, information is represented by a qubit, which can be both 0 and 1 at the same time. In a standard computer, each bit is also independent from every other bit. In a quantum computer, however, the state of every qubit can potentially influence the state of every other qubit. These two properties, which are called superposition and entanglement, theoretically give quantum computers exponentially more processing power than existing digital computers, which computer scientists often call “classical computers.”
There are other differences as well: Today’s digital computers pretty much all run on similar logic circuits constructed from semiconductors. The qubits in quantum computers can be made in a wide variety of different ways: IBM’s and Google’s quantum machines work by creating circuits using superconducting materials at extremely low temperatures. Microsoft has been trying to create a quantum computer using qubits that marry superconducting and semiconducting materials. Honeywell’s machine uses an entirely different method that relies on firing lasers into a material to trap ions.
The problem is that it is difficult to keep the qubits in a quantum state for long—one minute at most for a trapped ion qubit, just fractions of a second for most other superconducting circuits. And when these qubits fall out of a quantum state, errors pile up in their calculations. The presence of these errors and the fact that researchers have not yet figured out how to create chips with anywhere near the number of qubits as there are logical gates in a standard digital computer, mean that in most cases today’s quantum computers are still less powerful and less useful than even most laptops. This is true except for a small subset of very difficult problems—many related to quantum physics itself—where a quantum computer is the only provable way to arrive at a valid answer.