成人小说亚洲一区二区三区,亚洲国产精品一区二区三区,国产精品成人精品久久久,久久综合一区二区三区,精品无码av一区二区,国产一级a毛一级a看免费视频,欧洲uv免费在线区一二区,亚洲国产欧美中日韩成人综合视频,国产熟女一区二区三区五月婷小说,亚洲一区波多野结衣在线

首頁 500強(qiáng) 活動 榜單 商業(yè) 科技 領(lǐng)導(dǎo)力 專題 品牌中心
雜志訂閱

如何利用生成式人工智能形成競爭優(yōu)勢?

SHANE LUKE
2023-10-02

公司必須為安全應(yīng)用生成式人工智能技術(shù)制定策略。

文本設(shè)置
小號
默認(rèn)
大號
Plus(0條)

壓力來襲。幸運(yùn)的是,我們在人工智能革命中已經(jīng)走的夠遠(yuǎn),因此我們知道哪些因素必不可少。圖片來源:GETTY IMAGES

2022年11月,OpenAI發(fā)布ChatGPT之后,生成式人工智能很快從深奧的罕見之物,變成了主流,啟發(fā)人們的思考。之后,幾乎所有行業(yè)都變得更加迫切地想要應(yīng)用這項(xiàng)技術(shù)。各行各業(yè)都渴望抓住這波技術(shù)浪潮,因此在這種瘋狂沖動之下,出現(xiàn)了各種各樣的應(yīng)用,如快速醫(yī)學(xué)研發(fā)(人工智能最近幫助發(fā)現(xiàn)了一種可殺死超級細(xì)菌的抗生素),在軟件開發(fā)領(lǐng)域加快編程速度,或者優(yōu)化業(yè)務(wù)流程從而加快數(shù)據(jù)驅(qū)動決策等。

雖然人工智能在商界很快成為焦點(diǎn),商界領(lǐng)袖們也看好它增強(qiáng)勞動力和提高生產(chǎn)力的能力,但Workday的《全球高管人工智能指數(shù)報(bào)告》(C-Suite Global AI Indicator Report)顯示,只有44%的公司推出了人工智能產(chǎn)品或擴(kuò)大應(yīng)用規(guī)模。近一半(49%)CEO表示,由于缺乏工具、技能和知識,其所在公司尚未做好采用人工智能和機(jī)器學(xué)習(xí)(ML)的準(zhǔn)備。

但對于許多公司而言,這種情況不會持續(xù)太久。據(jù)麥肯錫(McKinsey)統(tǒng)計(jì),未來三年,有超過三分之二的公司計(jì)劃增加人工智能投資。人工智能潛力巨大,而且公司有強(qiáng)烈的意愿釋放這種潛力。現(xiàn)在,公司必須為安全應(yīng)用這項(xiàng)技術(shù)制定策略。

充分利用生成式人工智能的能力和減少其所帶來的風(fēng)險,需要滿足三個基本條件:優(yōu)質(zhì)數(shù)據(jù)、負(fù)責(zé)任的執(zhí)行和高管與IT部門之間的戰(zhàn)略合作。

數(shù)據(jù)質(zhì)量:生成式人工智能的基礎(chǔ)

ChatGPT以及其他類似應(yīng)用背后的大語言模型,通常使用網(wǎng)絡(luò)抓取的海量大數(shù)據(jù)進(jìn)行訓(xùn)練。事實(shí)證明,它們能夠非常有效地生成長格式、有條理的自然語言。然而,這些模型也經(jīng)常會生成令人不滿意的結(jié)果,例如存在事實(shí)錯誤(即所謂的“幻覺”),甚至不良的或有偏見的內(nèi)容。這并不令人意外,因?yàn)檫@些問題本身就存在于訓(xùn)練這些模式所使用的數(shù)據(jù)當(dāng)中。

因此,數(shù)據(jù)完整性是高管們擔(dān)心的一個重要問題。Workday的人工智能指數(shù)報(bào)告顯示,約三分之二(67%)CEO認(rèn)為“潛在錯誤”是整合人工智能和機(jī)器學(xué)習(xí)的最大風(fēng)險,而且只有4%的受訪者表示,他們的數(shù)據(jù)可以完全訪問。

這種觀點(diǎn)可謂一針見血。許多公司能生成高質(zhì)量的純凈數(shù)據(jù),但他們還沒有建立強(qiáng)大的數(shù)據(jù)基礎(chǔ)。相反,他們要應(yīng)對孤島式的、無法訪問的數(shù)據(jù),或者結(jié)構(gòu)不統(tǒng)一甚至未充分?jǐn)?shù)字化的數(shù)據(jù)。

高管們?nèi)粝雱?chuàng)建和執(zhí)行生成式人工智能工具,首先需要奠定必要的基礎(chǔ):高質(zhì)量、可靠和容易訪問的數(shù)據(jù)。如果沒有這個基礎(chǔ),對人工智能的投資不可能創(chuàng)造持續(xù)的價值。

好消息是,最近值得關(guān)注的大多數(shù)與生成式人工智能有關(guān)的問題,如結(jié)果不準(zhǔn)確或侵犯知識產(chǎn)權(quán)等,都是由于使用了廣泛的、從網(wǎng)絡(luò)上抓取的數(shù)據(jù)集。在商業(yè)背景下,數(shù)據(jù)集通常質(zhì)量更高。這些數(shù)據(jù)集規(guī)模更小,重點(diǎn)更突出,而且屬于專有數(shù)據(jù),這都可以幫助減少部分風(fēng)險。

負(fù)責(zé)任的執(zhí)行:以人為本的方法

以負(fù)責(zé)任的方式應(yīng)用生成式人工智能,意味著在執(zhí)行過程中,必須以尊重隱私、安全和人類判斷為基礎(chǔ)。最近技術(shù)進(jìn)步的爆火,以及大語言模型暴露出來的一些廣為人知的問題,令許多公司領(lǐng)導(dǎo)者意識到這項(xiàng)技術(shù)的潛在風(fēng)險,并著手積極解決這些問題。

而這些問題的核心就是隱私、安全和準(zhǔn)確性,這也是在Workday的報(bào)告中CEO們最擔(dān)心的問題。麥肯錫發(fā)現(xiàn),只有21%的公司表示,針對員工如何在工作中使用生成式人工智能,公司有負(fù)責(zé)任的人工智能治理計(jì)劃,這表明仍有巨大的改進(jìn)空間。在創(chuàng)建生成式人工智能系統(tǒng)時,應(yīng)該采用安全和負(fù)責(zé)任的方式,使用安全透明的數(shù)據(jù)集,這樣做不僅能避免偏見,還能帶來實(shí)實(shí)在在的好處。

只要以恰當(dāng)?shù)姆绞绞褂萌斯ぶ悄埽湍軒碓S多好處,如提高員工保留率、改善審計(jì)或?qū)Ω呒墑趧恿寄苓M(jìn)行分析等,而且它并不會取代人類。要在員工和客戶當(dāng)中建立信任和獲得支持,重要的一步是開發(fā)負(fù)責(zé)任的治理計(jì)劃,以清晰地傳達(dá)以人為本的人工智能道德準(zhǔn)則。

IT部門:你的戰(zhàn)略合作伙伴

人工智能對職場的影響,與互聯(lián)網(wǎng)帶來的顛覆性影響類似,需要有全公司范圍的綜合策略,而IT部門應(yīng)該是實(shí)現(xiàn)人工智能的效益并將效益最大化的合作伙伴。高管的戰(zhàn)略愿景和IT部門的專業(yè)技術(shù)相結(jié)合,能夠促進(jìn)創(chuàng)新,為公司獲得競爭優(yōu)勢。

隨著人工智能和機(jī)器學(xué)習(xí)應(yīng)用日益增多,并成為讓公司保持全球競爭力的關(guān)鍵核心,這種合作的力度則變得至關(guān)重要。此外,通過合作發(fā)現(xiàn)和減少執(zhí)行人工智能可能存在的陷阱,也有助于增強(qiáng)風(fēng)險管理。通過強(qiáng)有力的合作,公司可以建立必要的“護(hù)欄”,保證以負(fù)責(zé)任的方式應(yīng)用人工智能,同時將生成式人工智能技術(shù)的實(shí)際商業(yè)效益最大化。

隨著現(xiàn)成的企業(yè)級生成式人工智能工具越來越多,在人工智能領(lǐng)域繼續(xù)觀望將不再是明智之舉。保持競爭力意味著要充分利用人工智能的變革潛力。這不只是一種選擇,而是獲得競爭優(yōu)勢和保證未來在日益數(shù)字化的世界不被淘汰的決定性一步。(財(cái)富中文網(wǎng))

本文作者沙恩·盧克為Workday副總裁兼人工智能與機(jī)器學(xué)習(xí)總監(jiān)。Workday是《財(cái)富》人工智能頭腦風(fēng)暴大會的合作伙伴。

翻譯:劉進(jìn)龍

審校:汪皓

2022年11月,OpenAI發(fā)布ChatGPT之后,生成式人工智能很快從深奧的罕見之物,變成了主流,啟發(fā)人們的思考。之后,幾乎所有行業(yè)都變得更加迫切地想要應(yīng)用這項(xiàng)技術(shù)。各行各業(yè)都渴望抓住這波技術(shù)浪潮,因此在這種瘋狂沖動之下,出現(xiàn)了各種各樣的應(yīng)用,如快速醫(yī)學(xué)研發(fā)(人工智能最近幫助發(fā)現(xiàn)了一種可殺死超級細(xì)菌的抗生素),在軟件開發(fā)領(lǐng)域加快編程速度,或者優(yōu)化業(yè)務(wù)流程從而加快數(shù)據(jù)驅(qū)動決策等。

雖然人工智能在商界很快成為焦點(diǎn),商界領(lǐng)袖們也看好它增強(qiáng)勞動力和提高生產(chǎn)力的能力,但Workday的《全球高管人工智能指數(shù)報(bào)告》(C-Suite Global AI Indicator Report)顯示,只有44%的公司推出了人工智能產(chǎn)品或擴(kuò)大應(yīng)用規(guī)模。近一半(49%)CEO表示,由于缺乏工具、技能和知識,其所在公司尚未做好采用人工智能和機(jī)器學(xué)習(xí)(ML)的準(zhǔn)備。

但對于許多公司而言,這種情況不會持續(xù)太久。據(jù)麥肯錫(McKinsey)統(tǒng)計(jì),未來三年,有超過三分之二的公司計(jì)劃增加人工智能投資。人工智能潛力巨大,而且公司有強(qiáng)烈的意愿釋放這種潛力?,F(xiàn)在,公司必須為安全應(yīng)用這項(xiàng)技術(shù)制定策略。

充分利用生成式人工智能的能力和減少其所帶來的風(fēng)險,需要滿足三個基本條件:優(yōu)質(zhì)數(shù)據(jù)、負(fù)責(zé)任的執(zhí)行和高管與IT部門之間的戰(zhàn)略合作。

數(shù)據(jù)質(zhì)量:生成式人工智能的基礎(chǔ)

ChatGPT以及其他類似應(yīng)用背后的大語言模型,通常使用網(wǎng)絡(luò)抓取的海量大數(shù)據(jù)進(jìn)行訓(xùn)練。事實(shí)證明,它們能夠非常有效地生成長格式、有條理的自然語言。然而,這些模型也經(jīng)常會生成令人不滿意的結(jié)果,例如存在事實(shí)錯誤(即所謂的“幻覺”),甚至不良的或有偏見的內(nèi)容。這并不令人意外,因?yàn)檫@些問題本身就存在于訓(xùn)練這些模式所使用的數(shù)據(jù)當(dāng)中。

因此,數(shù)據(jù)完整性是高管們擔(dān)心的一個重要問題。Workday的人工智能指數(shù)報(bào)告顯示,約三分之二(67%)CEO認(rèn)為“潛在錯誤”是整合人工智能和機(jī)器學(xué)習(xí)的最大風(fēng)險,而且只有4%的受訪者表示,他們的數(shù)據(jù)可以完全訪問。

這種觀點(diǎn)可謂一針見血。許多公司能生成高質(zhì)量的純凈數(shù)據(jù),但他們還沒有建立強(qiáng)大的數(shù)據(jù)基礎(chǔ)。相反,他們要應(yīng)對孤島式的、無法訪問的數(shù)據(jù),或者結(jié)構(gòu)不統(tǒng)一甚至未充分?jǐn)?shù)字化的數(shù)據(jù)。

高管們?nèi)粝雱?chuàng)建和執(zhí)行生成式人工智能工具,首先需要奠定必要的基礎(chǔ):高質(zhì)量、可靠和容易訪問的數(shù)據(jù)。如果沒有這個基礎(chǔ),對人工智能的投資不可能創(chuàng)造持續(xù)的價值。

好消息是,最近值得關(guān)注的大多數(shù)與生成式人工智能有關(guān)的問題,如結(jié)果不準(zhǔn)確或侵犯知識產(chǎn)權(quán)等,都是由于使用了廣泛的、從網(wǎng)絡(luò)上抓取的數(shù)據(jù)集。在商業(yè)背景下,數(shù)據(jù)集通常質(zhì)量更高。這些數(shù)據(jù)集規(guī)模更小,重點(diǎn)更突出,而且屬于專有數(shù)據(jù),這都可以幫助減少部分風(fēng)險。

負(fù)責(zé)任的執(zhí)行:以人為本的方法

以負(fù)責(zé)任的方式應(yīng)用生成式人工智能,意味著在執(zhí)行過程中,必須以尊重隱私、安全和人類判斷為基礎(chǔ)。最近技術(shù)進(jìn)步的爆火,以及大語言模型暴露出來的一些廣為人知的問題,令許多公司領(lǐng)導(dǎo)者意識到這項(xiàng)技術(shù)的潛在風(fēng)險,并著手積極解決這些問題。

而這些問題的核心就是隱私、安全和準(zhǔn)確性,這也是在Workday的報(bào)告中CEO們最擔(dān)心的問題。麥肯錫發(fā)現(xiàn),只有21%的公司表示,針對員工如何在工作中使用生成式人工智能,公司有負(fù)責(zé)任的人工智能治理計(jì)劃,這表明仍有巨大的改進(jìn)空間。在創(chuàng)建生成式人工智能系統(tǒng)時,應(yīng)該采用安全和負(fù)責(zé)任的方式,使用安全透明的數(shù)據(jù)集,這樣做不僅能避免偏見,還能帶來實(shí)實(shí)在在的好處。

只要以恰當(dāng)?shù)姆绞绞褂萌斯ぶ悄埽湍軒碓S多好處,如提高員工保留率、改善審計(jì)或?qū)Ω呒墑趧恿寄苓M(jìn)行分析等,而且它并不會取代人類。要在員工和客戶當(dāng)中建立信任和獲得支持,重要的一步是開發(fā)負(fù)責(zé)任的治理計(jì)劃,以清晰地傳達(dá)以人為本的人工智能道德準(zhǔn)則。

IT部門:你的戰(zhàn)略合作伙伴

人工智能對職場的影響,與互聯(lián)網(wǎng)帶來的顛覆性影響類似,需要有全公司范圍的綜合策略,而IT部門應(yīng)該是實(shí)現(xiàn)人工智能的效益并將效益最大化的合作伙伴。高管的戰(zhàn)略愿景和IT部門的專業(yè)技術(shù)相結(jié)合,能夠促進(jìn)創(chuàng)新,為公司獲得競爭優(yōu)勢。

隨著人工智能和機(jī)器學(xué)習(xí)應(yīng)用日益增多,并成為讓公司保持全球競爭力的關(guān)鍵核心,這種合作的力度則變得至關(guān)重要。此外,通過合作發(fā)現(xiàn)和減少執(zhí)行人工智能可能存在的陷阱,也有助于增強(qiáng)風(fēng)險管理。通過強(qiáng)有力的合作,公司可以建立必要的“護(hù)欄”,保證以負(fù)責(zé)任的方式應(yīng)用人工智能,同時將生成式人工智能技術(shù)的實(shí)際商業(yè)效益最大化。

隨著現(xiàn)成的企業(yè)級生成式人工智能工具越來越多,在人工智能領(lǐng)域繼續(xù)觀望將不再是明智之舉。保持競爭力意味著要充分利用人工智能的變革潛力。這不只是一種選擇,而是獲得競爭優(yōu)勢和保證未來在日益數(shù)字化的世界不被淘汰的決定性一步。(財(cái)富中文網(wǎng))

本文作者沙恩·盧克為Workday副總裁兼人工智能與機(jī)器學(xué)習(xí)總監(jiān)。Workday是《財(cái)富》人工智能頭腦風(fēng)暴大會的合作伙伴。

翻譯:劉進(jìn)龍

審校:汪皓

When OpenAI launched ChatGPT in November 2022, generative artificial intelligence instantly went from esoteric curiosity to mainstream and provocative. Since then, the urgency to apply this technology across nearly all industries has only intensified. Applications as varied as rapid medical science discoveries (AI recently helped identify a new superbug-killing antibiotic), quicker coding in software development, or optimization of business processes to accelerate data-driven decision-making have all been part of this frenzied rush to ride this technology wave.

While AI has quickly become a topic of conversation in the business world, and business leaders are optimistic about its ability to augment the workforce and drive productivity, only 44% of organizations are rolling out or scaling up adoption, according to Workday’s C-Suite Global AI Indicator Report. Nearly half (49%) of CEOs say their organization is unprepared to adopt AI and machine learning (ML), because of a lack of tools, skills, and knowledge.

But for many companies, that won’t be the case for long. More than two-thirds of organizations plan to increase their AI investments in the next three years, according to McKinsey. The potential benefits, and the will to realize them, are huge. Now organizations must form a strategy to safely capitalize on the technology.

Fully leveraging the capabilities of generative AI, and mitigate its risks, requires three essential things: quality data, responsible implementation, and a strategic partnership between the C-suite and IT.

Data quality: Generative AI’s foundation

The large language models (LLMs) behind ChatGPT and similar applications are usually trained on broad swaths of language data scraped from the web. They have proven very effective at outputting long-form, well-structured natural language. However, they have also been shown to frequently produce undesirable outputs, like things that are factually incorrect (known as “hallucinations”), or even toxic or biased content. That is not very surprising, given how those things are present in the data they were trained on.

As a result, data integrity is a major concern for the C-suite. About two-thirds (67%) of CEOs view “potential errors” as a top risk of AI and ML integration, and only 4% of all respondents said their data is completely accessible, according to Workday’s AI Indicator report.

That perception is on point. Many organizations generate high-quality, clean data, but have yet to build a strong data foundation. Instead, they’re struggling with siloed, inaccessible data or data that’s not uniformly structured or even fully digitized.

Executives who want to create and implement generative AI tools need to put the necessary building blocks in place first: high-quality, reliable, and easily accessible data. Without that, investment in AI is unlikely to produce sustained value.

The good news is that most of the recent, noteworthy generative AI problems—incorrect outputs or IP infringements—were a result of using those broad, web-scraped data sets. In a business context, data sets are usually higher-quality. They’re smaller, more focused, and proprietary, all of which help mitigate some of the risks.

Responsible implementation: A human-centric approach

Applying generative AI in a responsible way means implementation must be grounded in respect for privacy, security, and human judgment. The tremendous publicity around recent advancements, and some of the publicly visible issues LLMs have demonstrated, have made many leaders aware of potential risks to the technology, and they’re being proactive in addressing them.

Privacy, security, and accuracy—top concerns flagged by CEOs in Workday’s report—should stay front and center. Still, just 21% of companies report having a responsible AI governance program for how employees can use generative AI at work, McKinsey found, showing there is plenty of room for improvement. Generative AI systems can be built out safely and responsibly, with secure, transparent data sets that protect against bias and delivers tangible benefits.

When used properly, AI can do things like boost employee retention, improve auditing, or do advanced workforce skill mapping, and it can do all of that without displacing people. An important step in building trust and securing buy-in among employees and customers is developing a responsible governance program to articulate AI ethics principles that puts people at the center.

The IT department: Your strategic partner

The influence of AI on the world of work, similar to the transformative impact of the internet, requires a comprehensive company-wide approach, with IT positioned as a partner to drive and maximize its benefits. The C-suite’s strategic vision and IT’s technical expertise can be combined to drive innovation and gain a competitive advantage.

As AI and ML applications multiply, and become central to running a globally competitive business, the strength of this partnership is crucial. Moreover, it strengthens risk management by identifying, and mitigating, potential pitfalls in AI implementation. With a strong partnership in place, organizations can establish the necessary guardrails to ensure responsible AI practices while maximizing the tangible business benefits of generative AI technologies.

With a growing number of off-the-shelf enterprise generative AI tools now available, sitting on the AI sidelines is no longer an option. Remaining competitive means fully leveraging AI’s transformative potential. This is not just a choice; it is the defining step toward securing a competitive edge and ensuring future relevance in an increasingly digital world.

Shane Luke is vice president, head of AI and machine learning at Workday. Workday is a partner of Fortune‘s Brainstorm A.I.

財(cái)富中文網(wǎng)所刊載內(nèi)容之知識產(chǎn)權(quán)為財(cái)富媒體知識產(chǎn)權(quán)有限公司及/或相關(guān)權(quán)利人專屬所有或持有。未經(jīng)許可,禁止進(jìn)行轉(zhuǎn)載、摘編、復(fù)制及建立鏡像等任何使用。
0條Plus
精彩評論
評論

撰寫或查看更多評論

請打開財(cái)富Plus APP

前往打開
熱讀文章
国产精品成人无码免费| 精品久久免费视频| 亚洲黄片无码国产精品伊人av| 少妇人妻系列1~100| 婷婷激情综合网亚州五月中文字幕 | 人人爽天天碰狠狠添 | 国产成人精视频在线观看免费| 91麻豆精品国产高清在线| 伊人无码精品久久一区二区| 国产精品视频一区国模私拍| 国产女人高潮好舒服在线观看| 亚洲制服另类无码专区| 亚洲永久国产一级大片在线观看| 日本中文字幕乱码免费| 亚洲国产中文精品综合久久| 成人午夜a级毛片免费| 国产偷窥熟女高潮精品视频免费| 欧美日本韩国一区二区三区视频| 国产精品高潮呻吟久久av无码午夜鲁丝片| 欧美日韩第一区二区三区| 2021亚洲精品一卡2卡三卡4卡| 久久久久国产精品嫩草影院| 中文字幕无码亚洲字幕成a人蜜桃| 97热久久免费频精品99| 久久综合精品国产一区二区三区无码| 国内老熟妇乱子伦视频| 人人澡人人妻人人爽人人蜜桃麻豆| jizzyou中国少妇高潮| 人人揉人人捏人人澡人人添| 国产三级精品三级在线观看| 亚洲av永久综合在线观看另类| 亚洲v欧美v日韩v中文字幕| 国产成人综合日韩精品无码| 国产精久久一区二区三区| 国产99久久久久久免费看| 国产XXXX色视频在线观看| 国产精品96久久久久久AV网址| 国产一级做a爰片久久毛片99| 久久久久精品国产AV麻豆| 国产三级精品三级男人的天堂| 91自慰喷水流白浆免费观看|