成人小说亚洲一区二区三区,亚洲国产精品一区二区三区,国产精品成人精品久久久,久久综合一区二区三区,精品无码av一区二区,国产一级a毛一级a看免费视频,欧洲uv免费在线区一二区,亚洲国产欧美中日韩成人综合视频,国产熟女一区二区三区五月婷小说,亚洲一区波多野结衣在线

首頁(yè) 500強(qiáng) 活動(dòng) 榜單 商業(yè) 科技 領(lǐng)導(dǎo)力 專題 品牌中心
雜志訂閱

生成式人工智能如何使無(wú)邊界組織成為可能

Jack Azagury
2024-12-09

全行業(yè)對(duì)生成式人工智能技術(shù)的熱情高漲。

文本設(shè)置
小號(hào)
默認(rèn)
大號(hào)
Plus(0條)

圖片來(lái)源:Eugene Mymrin—Getty Images

全行業(yè)對(duì)生成式人工智能技術(shù)的熱情高漲,掀起了試驗(yàn)浪潮。眾多企業(yè)在其銷售、市場(chǎng)營(yíng)銷、客戶服務(wù)以及信息技術(shù)等領(lǐng)域的既有流程中嵌入獨(dú)立用例。僅有少數(shù)企業(yè)能夠利用生成式人工智能重塑整個(gè)流程,并且基于精確且切實(shí)可行的商業(yè)案例來(lái)指導(dǎo)其人工智能投資。

只有當(dāng)領(lǐng)導(dǎo)者著手運(yùn)用人工智能從根本上重塑端到端工作流程時(shí),才能充分發(fā)揮生成式人工智能的優(yōu)勢(shì)。重新評(píng)估企業(yè)整體流程旨在實(shí)現(xiàn)三大目標(biāo):1)打造無(wú)縫的終端用戶體驗(yàn);2)彌合生產(chǎn)力差距,尤其是職能或部門之間的差距;3)根據(jù)業(yè)務(wù)成果更精準(zhǔn)地追蹤價(jià)值。

已有部分公司先行一步,走在了前列。以一家保險(xiǎn)公司為例,它正著手全面重塑其承銷流程。該公司將生成式人工智能融入流程的每一個(gè)環(huán)節(jié),同時(shí)并未忽視承銷人員的經(jīng)驗(yàn)。通過(guò)將這一技術(shù)整合至整個(gè)價(jià)值鏈中,該公司極大地提升了服務(wù)客戶的效率,進(jìn)而吸引了更多客戶,實(shí)現(xiàn)了收入的兩位數(shù)增長(zhǎng)。

無(wú)邊界的價(jià)值

成功的數(shù)字化轉(zhuǎn)型絕非單純技術(shù)層面的革新,它要求企業(yè)必須重塑工作方式,并確保從高管到一線員工的所有成員都能深度參與到轉(zhuǎn)型中。

要構(gòu)建生成式人工智能驅(qū)動(dòng)的端到端工作流程,就必須對(duì)人員和機(jī)器的組織架構(gòu)進(jìn)行根本性變革,并借鑒杰克借鑒杰克·韋爾奇(Jack Welch)于1990年在通用電氣公司(General Electric)首次提出的經(jīng)典理念的新版本:打破組織內(nèi)部及外部的孤島,實(shí)現(xiàn)無(wú)邊界的運(yùn)營(yíng)模式。

我們就如何利用技術(shù)和數(shù)據(jù)推動(dòng)業(yè)務(wù)變革對(duì)近乎全部(99%)高管進(jìn)行了調(diào)查,他們表示,重塑跨職能能力是他們轉(zhuǎn)型計(jì)劃的重點(diǎn)。75%的高管在培養(yǎng)這些能力時(shí),常常尋求行業(yè)外部的先進(jìn)實(shí)踐。那些能夠以這種方式有效跨越內(nèi)部與外部界限進(jìn)行思考和行動(dòng)的公司,其轉(zhuǎn)型成功的幾率可以提高50%。

盡管無(wú)邊界運(yùn)營(yíng)被視為變革者的關(guān)鍵特質(zhì)之一,但它也是最難實(shí)現(xiàn)的。調(diào)查顯示,只有四分之一的高管認(rèn)為他們所在的組織已經(jīng)具備了支持戰(zhàn)略重塑的正確運(yùn)營(yíng)模式。高達(dá)75%的高管坦言,他們的組織在跨部門協(xié)作方面效率低下。

那么,企業(yè)如何才能開發(fā)出一種有效的運(yùn)營(yíng)模式,從而進(jìn)一步打破邊界呢?生成式人工智能使這一需求變得更加迫切,同時(shí)也為企業(yè)提供了打破孤島狀態(tài)的終極利器。

生成式人工智能實(shí)現(xiàn)無(wú)邊界組織的四種方式

1. 無(wú)邊界數(shù)據(jù) 一切始于數(shù)據(jù)。大多數(shù)公司在這方面投資不足,因此在技術(shù)整合方面遭遇重重挑戰(zhàn)。如今,生成式人工智能能夠通過(guò)我們所稱的“數(shù)字核心”基礎(chǔ)架構(gòu),幫助連接繁雜多樣的數(shù)據(jù)集和技術(shù)。例如,生成式人工智能能夠自動(dòng)整合來(lái)自多個(gè)遺留系統(tǒng)的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù),將繁雜多樣的數(shù)據(jù)格式和模式轉(zhuǎn)換為統(tǒng)一的數(shù)據(jù)格式和模式。

2. 無(wú)邊界團(tuán)隊(duì) 企業(yè)一直在努力打破組織內(nèi)部的孤島,但領(lǐng)導(dǎo)層往往將結(jié)構(gòu)變革視為失控。雖然許多信息技術(shù)部門已經(jīng)采用了敏捷原則,但企業(yè)內(nèi)的其他業(yè)務(wù)部門往往行動(dòng)遲緩。如今,由企業(yè)不同部門組成的跨職能團(tuán)隊(duì)網(wǎng)絡(luò)能夠作為自我管理實(shí)體運(yùn)營(yíng),并通過(guò)利用生成式人工智能系統(tǒng)來(lái)指導(dǎo)決策、解決沖突和提供更便捷的跨職能知識(shí)訪問(wèn)途徑。

3.無(wú)邊界技能 過(guò)去,需要持續(xù)教育來(lái)支持無(wú)邊界技能發(fā)展,這似乎是一道難以逾越的鴻溝。如今,生成式人工智能能夠近乎實(shí)時(shí)地分析勞動(dòng)力技能,并識(shí)別出差距所在。學(xué)習(xí)已經(jīng)能夠融入日常工作流程中,人工智能會(huì)根據(jù)當(dāng)前項(xiàng)目需求和長(zhǎng)期職業(yè)發(fā)展目標(biāo)推薦持續(xù)發(fā)展機(jī)會(huì)。平臺(tái)而非教室能夠提供完全個(gè)性化的培訓(xùn)模塊。

4.無(wú)邊界代理能力 代理架構(gòu)是創(chuàng)建無(wú)邊界組織的下一個(gè)重大飛躍。人工智能代理作為自主系統(tǒng)能夠感知環(huán)境、理解意圖和采取行動(dòng)以實(shí)現(xiàn)目標(biāo),且僅需最少的人工干預(yù)。這些代理能夠與人類和其他代理協(xié)同工作,處理復(fù)雜任務(wù),并為用戶提供全面的建議和洞察。與專注于單一任務(wù)的傳統(tǒng)自動(dòng)化不同,代理架構(gòu)重塑了跨部門的全工作流程。例如,在貸款審批流程中,一個(gè)代理負(fù)責(zé)評(píng)估信用狀況,另一個(gè)代理檢測(cè)欺詐行為,第三個(gè)則負(fù)責(zé)客戶溝通,所有這些代理都能與監(jiān)督流程的員工實(shí)現(xiàn)無(wú)縫協(xié)作。

生成式人工智能具有重塑整個(gè)企業(yè)績(jī)效的潛力,這是以往任何技術(shù)都無(wú)法比擬的。它能夠助力企業(yè)真正實(shí)現(xiàn)無(wú)邊界,并以全新的模式運(yùn)營(yíng)。在安全數(shù)據(jù)和靈活自主的團(tuán)隊(duì)基礎(chǔ)上,輔以代理架構(gòu),生成式人工智能使得我們能夠跨越生態(tài)系統(tǒng)和行業(yè)的界限,以前所未有的方式與機(jī)器實(shí)現(xiàn)大規(guī)模協(xié)同作業(yè)。(財(cái)富中文網(wǎng))

本評(píng)論由《財(cái)富》分析、《財(cái)富》人工智能頭腦風(fēng)暴大會(huì)和《財(cái)富》聚焦人工智能的贊助商埃森哲(Accenture)提供。杰克·阿扎古里(Jack Azagury)擔(dān)任埃森哲咨詢集團(tuán)首席執(zhí)行官。

譯者:中慧言-王芳

全行業(yè)對(duì)生成式人工智能技術(shù)的熱情高漲,掀起了試驗(yàn)浪潮。眾多企業(yè)在其銷售、市場(chǎng)營(yíng)銷、客戶服務(wù)以及信息技術(shù)等領(lǐng)域的既有流程中嵌入獨(dú)立用例。僅有少數(shù)企業(yè)能夠利用生成式人工智能重塑整個(gè)流程,并且基于精確且切實(shí)可行的商業(yè)案例來(lái)指導(dǎo)其人工智能投資。

只有當(dāng)領(lǐng)導(dǎo)者著手運(yùn)用人工智能從根本上重塑端到端工作流程時(shí),才能充分發(fā)揮生成式人工智能的優(yōu)勢(shì)。重新評(píng)估企業(yè)整體流程旨在實(shí)現(xiàn)三大目標(biāo):1)打造無(wú)縫的終端用戶體驗(yàn);2)彌合生產(chǎn)力差距,尤其是職能或部門之間的差距;3)根據(jù)業(yè)務(wù)成果更精準(zhǔn)地追蹤價(jià)值。

已有部分公司先行一步,走在了前列。以一家保險(xiǎn)公司為例,它正著手全面重塑其承銷流程。該公司將生成式人工智能融入流程的每一個(gè)環(huán)節(jié),同時(shí)并未忽視承銷人員的經(jīng)驗(yàn)。通過(guò)將這一技術(shù)整合至整個(gè)價(jià)值鏈中,該公司極大地提升了服務(wù)客戶的效率,進(jìn)而吸引了更多客戶,實(shí)現(xiàn)了收入的兩位數(shù)增長(zhǎng)。

無(wú)邊界的價(jià)值

成功的數(shù)字化轉(zhuǎn)型絕非單純技術(shù)層面的革新,它要求企業(yè)必須重塑工作方式,并確保從高管到一線員工的所有成員都能深度參與到轉(zhuǎn)型中。

要構(gòu)建生成式人工智能驅(qū)動(dòng)的端到端工作流程,就必須對(duì)人員和機(jī)器的組織架構(gòu)進(jìn)行根本性變革,并借鑒杰克借鑒杰克·韋爾奇(Jack Welch)于1990年在通用電氣公司(General Electric)首次提出的經(jīng)典理念的新版本:打破組織內(nèi)部及外部的孤島,實(shí)現(xiàn)無(wú)邊界的運(yùn)營(yíng)模式。

我們就如何利用技術(shù)和數(shù)據(jù)推動(dòng)業(yè)務(wù)變革對(duì)近乎全部(99%)高管進(jìn)行了調(diào)查,他們表示,重塑跨職能能力是他們轉(zhuǎn)型計(jì)劃的重點(diǎn)。75%的高管在培養(yǎng)這些能力時(shí),常常尋求行業(yè)外部的先進(jìn)實(shí)踐。那些能夠以這種方式有效跨越內(nèi)部與外部界限進(jìn)行思考和行動(dòng)的公司,其轉(zhuǎn)型成功的幾率可以提高50%。

盡管無(wú)邊界運(yùn)營(yíng)被視為變革者的關(guān)鍵特質(zhì)之一,但它也是最難實(shí)現(xiàn)的。調(diào)查顯示,只有四分之一的高管認(rèn)為他們所在的組織已經(jīng)具備了支持戰(zhàn)略重塑的正確運(yùn)營(yíng)模式。高達(dá)75%的高管坦言,他們的組織在跨部門協(xié)作方面效率低下。

那么,企業(yè)如何才能開發(fā)出一種有效的運(yùn)營(yíng)模式,從而進(jìn)一步打破邊界呢?生成式人工智能使這一需求變得更加迫切,同時(shí)也為企業(yè)提供了打破孤島狀態(tài)的終極利器。

生成式人工智能實(shí)現(xiàn)無(wú)邊界組織的四種方式

1. 無(wú)邊界數(shù)據(jù) 一切始于數(shù)據(jù)。大多數(shù)公司在這方面投資不足,因此在技術(shù)整合方面遭遇重重挑戰(zhàn)。如今,生成式人工智能能夠通過(guò)我們所稱的“數(shù)字核心”基礎(chǔ)架構(gòu),幫助連接繁雜多樣的數(shù)據(jù)集和技術(shù)。例如,生成式人工智能能夠自動(dòng)整合來(lái)自多個(gè)遺留系統(tǒng)的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù),將繁雜多樣的數(shù)據(jù)格式和模式轉(zhuǎn)換為統(tǒng)一的數(shù)據(jù)格式和模式。

2. 無(wú)邊界團(tuán)隊(duì) 企業(yè)一直在努力打破組織內(nèi)部的孤島,但領(lǐng)導(dǎo)層往往將結(jié)構(gòu)變革視為失控。雖然許多信息技術(shù)部門已經(jīng)采用了敏捷原則,但企業(yè)內(nèi)的其他業(yè)務(wù)部門往往行動(dòng)遲緩。如今,由企業(yè)不同部門組成的跨職能團(tuán)隊(duì)網(wǎng)絡(luò)能夠作為自我管理實(shí)體運(yùn)營(yíng),并通過(guò)利用生成式人工智能系統(tǒng)來(lái)指導(dǎo)決策、解決沖突和提供更便捷的跨職能知識(shí)訪問(wèn)途徑。

3.無(wú)邊界技能 過(guò)去,需要持續(xù)教育來(lái)支持無(wú)邊界技能發(fā)展,這似乎是一道難以逾越的鴻溝。如今,生成式人工智能能夠近乎實(shí)時(shí)地分析勞動(dòng)力技能,并識(shí)別出差距所在。學(xué)習(xí)已經(jīng)能夠融入日常工作流程中,人工智能會(huì)根據(jù)當(dāng)前項(xiàng)目需求和長(zhǎng)期職業(yè)發(fā)展目標(biāo)推薦持續(xù)發(fā)展機(jī)會(huì)。平臺(tái)而非教室能夠提供完全個(gè)性化的培訓(xùn)模塊。

4.無(wú)邊界代理能力 代理架構(gòu)是創(chuàng)建無(wú)邊界組織的下一個(gè)重大飛躍。人工智能代理作為自主系統(tǒng)能夠感知環(huán)境、理解意圖和采取行動(dòng)以實(shí)現(xiàn)目標(biāo),且僅需最少的人工干預(yù)。這些代理能夠與人類和其他代理協(xié)同工作,處理復(fù)雜任務(wù),并為用戶提供全面的建議和洞察。與專注于單一任務(wù)的傳統(tǒng)自動(dòng)化不同,代理架構(gòu)重塑了跨部門的全工作流程。例如,在貸款審批流程中,一個(gè)代理負(fù)責(zé)評(píng)估信用狀況,另一個(gè)代理檢測(cè)欺詐行為,第三個(gè)則負(fù)責(zé)客戶溝通,所有這些代理都能與監(jiān)督流程的員工實(shí)現(xiàn)無(wú)縫協(xié)作。

生成式人工智能具有重塑整個(gè)企業(yè)績(jī)效的潛力,這是以往任何技術(shù)都無(wú)法比擬的。它能夠助力企業(yè)真正實(shí)現(xiàn)無(wú)邊界,并以全新的模式運(yùn)營(yíng)。在安全數(shù)據(jù)和靈活自主的團(tuán)隊(duì)基礎(chǔ)上,輔以代理架構(gòu),生成式人工智能使得我們能夠跨越生態(tài)系統(tǒng)和行業(yè)的界限,以前所未有的方式與機(jī)器實(shí)現(xiàn)大規(guī)模協(xié)同作業(yè)。(財(cái)富中文網(wǎng))

本評(píng)論由《財(cái)富》分析、《財(cái)富》人工智能頭腦風(fēng)暴大會(huì)和《財(cái)富》聚焦人工智能的贊助商埃森哲(Accenture)提供。杰克·阿扎古里(Jack Azagury)擔(dān)任埃森哲咨詢集團(tuán)首席執(zhí)行官。

譯者:中慧言-王芳

Eugene Mymrin—Getty Images

The broad enthusiasm about generative AI (gen AI) has led to a burst of experimentation. Most companies are implementing standalone use cases on top of existing processes in areas such as sales, marketing, customer service, and IT. Too few are reinventing the entirety of their processes with gen AI and running their gen AI investments with a precise and actionable business case.

The full benefits of gen AI may only be realized if leaders start using it to fundamentally reinvent end-to-end workflows. Re-examining processes across the enterprise serves three purposes: 1) creating a seamless end-user experience; 2) addressing productivity gaps, particularly at the seams between functions or departments; and 3) tracking value more effectively against business outcomes.

There are companies already leading from the front. One insurer, for example, is reinventing the entirety of its underwriting capabilities. For each step, the insurer embedded gen AI, never losing sight of the underwriter’s experience. Taking account of this across the value chain enabled a step-change in how quickly—and therefore how many—customers could be served, driving double-digit revenue increases.

The value of becoming boundaryless

It’s never just about technology when it comes to successful digital transformations. Companies must reinvent how they work and ensure that employees—from the C-suite to the frontline—are fully engaged in the journey.

Building gen AI-enabled end-to-end workflows requires a radical change in how people—and machines—are organized, drawing on a new version of an old idea first coined by Jack Welch at General Electric in 1990: a boundaryless operating model that breaks down silos across the organization and beyond.

Almost all (99%) executives we surveyed about how they are using technology and data to change their business say reinventing cross-functional capabilities is the focus of their transformation programs. And 75% frequently look outside their industry for leading practices when developing those capabilities. Companies that are effective in thinking and acting beyond internal and external boundaries in this way increase their odds of reinvention success by 50%.

While operating boundaryless is a key characteristic of reinventors, it is often the hardest to achieve. Only one in four executives are confident their organizations have the right operating model to support their reinvention strategy, with 75% saying their organizations are ineffective in working across silos.

How then can companies develop an effective operating model that pushes the boundaries even further? While gen AI has made this need more urgent, it can also give organizations the tools to finally dismantle their silos.

Four ways gen AI enables a boundaryless organization

1. Boundaryless data It all starts with data. Most companies have underinvested in this area and thus experienced challenges with technology integration. Now, gen AI can help connect what was a disparate collection of data sets and technologies through a foundation we call a “digital core.” For example, gen AI can automatically integrate data—both structured and unstructured—from multiple legacy systems, translating different data formats and schemas into a unified one.

2. Boundaryless teams Companies have struggled to break down organizational silos, with leadership often equating a loss of structure with a loss of control. While many IT departments embrace agile principles, the business side of enterprises often lags behind. Now, networks of cross-functional teams from across the enterprise can operate as self-managing entities, empowered by gen AI systems that guide decision-making, resolve conflicts, and provide easier access to cross-functional knowledge.

3. Boundaryless skills Before, the need for ongoing education to support boundaryless skill development seemed too overwhelming to overcome. Now, gen AI can analyze workforce skills and identify gaps in near real-time. Learning can be integrated into daily workflows, with AI recommending continuous development opportunities that align with immediate project needs and long-term career development goals. And platforms—rather than classrooms—can deliver personalized training modules that are fully individualized.

4. Boundaryless agentic capabilities Agentic architecture represents the next leap in creating a boundaryless organization. AI agents are autonomous systems that perceive their environment, understand intent, and take action to achieve goals with minimal human intervention. These agents can collaborate with humans and other agents to solve complex tasks, providing users with comprehensive recommendations and insights. Unlike traditional automation, which focuses on individual tasks, agentic architecture reinvents entire workflows that span departments. For example, in a loan approval process, one agent assesses creditworthiness, another detects fraud, and a third manages customer communication, all working seamlessly together with employees who oversee the process.

Gen AI has the potential to redefine performance across the enterprise like no technology before. It can enable organizations to become truly boundaryless and operate in a radically different way. Built on secured data, agile, autonomous teams, and augmented by agentic architectures, gen AI will allow us to collaborate at scale with machines, across ecosystems and industries, in ways we haven’t seen before.

This commentary is from Accenture, a sponsor of Fortune Analytics, Fortune Brainstorm AI and Fortune Eye on AI. Jack Azagury is group chief executive–consulting at Accenture.

財(cái)富中文網(wǎng)所刊載內(nèi)容之知識(shí)產(chǎn)權(quán)為財(cái)富媒體知識(shí)產(chǎn)權(quán)有限公司及/或相關(guān)權(quán)利人專屬所有或持有。未經(jīng)許可,禁止進(jìn)行轉(zhuǎn)載、摘編、復(fù)制及建立鏡像等任何使用。
0條Plus
精彩評(píng)論
評(píng)論

撰寫或查看更多評(píng)論

請(qǐng)打開財(cái)富Plus APP

前往打開
熱讀文章
午夜精品无人区乱码1区2区| 国产高清无密码一区二区三区| 极品少妇被猛的白浆直喷白浆| av无码精品一区二区三区三级| 丰满3中文字幕第一页| 欧美韩国精品另类综合| 边吃奶边做好爽动态图| 夜夜高潮夜夜爽夜夜爱爱| 精品少妇人妻av无码专区| 国产午夜无码精品免费看| 惠民福利中文字幕人妻无码乱精品| 精品国产自在在线午夜| 国产成人A∨激情视频厨房| 女儿的朋友7中汉字晋通话| 91精品久久久久久久久无码| 久久人人爽人人爽人人片av高| 中文字幕无码精品AV亚洲乱码| 色丁狠狠桃花久久综合网| 国产VA免费精品高清在线观看| 亚洲爆乳AAA无码专区| 亚洲欧美日韩一区二区在线观看| 亚洲国产一二三精品无码| 亚洲欧美日韩久久精品第一区| 女同久久精品国产99国产精品| 99草草国产熟女视频在线| 最近高清中文在线国语字幕| 不卡高清av手机在线观| 久久久91人妻无码精品蜜桃HD| 久久久久久一级精品毛片| 国产xxxx视频在线观看| 人妻少妇久久中文字幕| 巨胸的教师在线完整版中文| 国产在线精品一区二区不卡| 亚洲一区二区三区国产精华液| 色偷偷人人澡人人爽人人模| 亚洲AV无码国产丝袜在线观看| 欧美日韩人妻精品系列一区二区三区| 久久久久久久波多野结衣高潮| 国产女人高潮好舒服在线观看| 日韩精品无码专区视频网站 | 久久国产欧美日韩精品|