去年初春的一天,在位于波士頓以西約50公里、馬薩諸塞州哈德遜市的一片田園風光山坡上,半導體巨頭企業(yè)英特爾為公司的30多名設計師、工程師和其他員工舉辦了一場派對。
依照科技行業(yè)的標準,派對上的這群人顯得比較成熟——大部分人都穿著馬球衫、開襟針織衫或襯衣,很少有人穿連帽衫。事實上,他們中的大多數(shù)人在20世紀90年代中期或者更早的時候就進入科技行業(yè)工作了。加入英特爾之前,他們還曾在數(shù)字設備公司(DEC)工作過——現(xiàn)已不復存在的DEC曾是一家開創(chuàng)性的科技巨頭企業(yè),舉辦這場派對的地方以前曾為DEC所有。
派對上最引人注目的人物在一群老朋友中顯得悠然自得。他留著花白的胡子和沖浪手式的長發(fā),身材很結實,看上去更像是一位已退役的橄欖球后衛(wèi)或是職業(yè)沖浪手,而不像是設計了過去30年中最重要的芯片的設計師。他就是吉姆·凱勒,英特爾正在期待他能帶領公司深陷困境的芯片設計業(yè)務重塑往日輝煌。
雖然凱勒在計算機行業(yè)之外鮮為人知,但在芯片制造領域,他絕對算得上是一位超級明星,地位堪比弗蘭克·勞埃德·賴特在建筑領域的建樹,或曾帶領多支球隊獲取總冠軍的籃球教練菲爾·杰克遜在NBA的影響力。凱勒的職業(yè)生涯開始于20世紀80年代,他最早在DEC公司就職,此后一步一步地取得了一系列令人矚目的成就。他的設計幫助AMD公司從微芯片領域的失敗者,發(fā)展成為令對手不可小覷的競爭者。而特斯拉全新的、能識別紅綠燈和停車標志的芯片也是由凱勒設計的。蘋果手機、谷歌云服務器和Xbox游戲機等產品的芯片,其核心技術都受到了凱勒的影響。在多年的工作歷程中,凱勒也得以近距接觸到史蒂夫·喬布斯、埃隆·馬斯克,以及AMD公司創(chuàng)始人杰瑞·桑德斯等科技界傳奇人物的管理風格。
AMD公司的前首席技術官弗雷德·韋伯說:“凱勒就像是科技行業(yè)的阿甘。他一直在做著最有趣的事情,一直在改變著世界?!?018年4月,這位“科技界阿甘”又踏上了新的旅程,離開特斯拉,加入了英特爾公司——而他此前的職業(yè)生涯中一直在同這家芯片行業(yè)巨頭競爭。
凱勒是那場在哈德遜舉辦的派對上最重要的貴賓,連派對的舉辦地點都是他選的。他在派對上四處走動時,人們才驚訝地發(fā)現(xiàn)原來他很少談論與芯片相關的話題。英特爾的服務器計算機架構師德布·伯恩斯坦很久以前也曾和凱勒一起在DEC公司共事。她回憶說,凱勒跟她討論的是關于佛教和物理學的一些看法。(在與《財富》雜志的單獨交流中,凱勒曾提到他從戰(zhàn)斗機飛行員約翰·博伊德的傳記以及精神教導書《不羈的靈魂》[The Untethered Soul]中學到的道理。)伯恩斯坦表示:“凱勒給人的感覺就像是他主動地通過不斷學習,攻讀了一個又一個的博士學位?!?/font>
在談到自己的職業(yè)生涯時,凱勒本人也用教育做了一個類比。他把自己擔任過的職位分成了兩類:有的教會了他很多東西,有的則等著他去“執(zhí)教”。他告訴《財富》雜志:“我在很多完全不同的企業(yè)工作過,我覺得自己在任職過每一家企業(yè)都學到了寶貴的經驗教訓。在加入蘋果和特斯拉的時候,我沒有想要去改變那里的任何事。我加入這樣的企業(yè)是為了改變我自己。它們的工作方式跟世界上的很多其他企業(yè)都不一樣?!?/font>
英特爾則屬于凱勒提到的第二類企業(yè)——等著他去執(zhí)教的企業(yè)。頂著技術、系統(tǒng)架構和客戶部門高級副總裁的頭銜,凱勒目前在英特爾的半導體工程部門管理著1萬多名員工。英特爾的芯片研發(fā)此前遭遇了幾次令人印象深刻的失敗,企業(yè)的市場份額和利潤也因此出現(xiàn)下滑趨勢,而凱勒的工作則將決定英特爾能否重新成為下一代數(shù)據(jù)奇才和設備設計師眼中的霸主企業(yè)。
已在英特爾工作了近25年的公司平臺研發(fā)事業(yè)部主管賽萊什·科塔帕利說:“我們正在經歷著一次轉型,而吉姆絕對是負責掌舵的最合適人選。我從未見過有著如此深厚技術背景的高管,他更有著技術方面的直覺?!?/font>
為了更深入地了解凱勒的直覺對他本人的影響,以及他的直覺可能將英特爾帶向何方,《財富》雜志采訪了30位凱勒的現(xiàn)任、前任同事以及競爭對手。(部分受訪者由于未得到雇主許可而要求匿名接受我們的采訪。)通過他們的描述,我們看到了一位極其天才的問題解決者的形象——他的職業(yè)生涯軌跡記錄了過去30年內發(fā)生在計算機領域的若干重大變化。
從“內置英特爾”時代到深陷困境
微處理器設計領域十分重要,且一直在不斷發(fā)展。1965年,英特爾的聯(lián)合創(chuàng)始人戈登·摩爾首次提出了著名的摩爾定律,總結了制造領域技術進步的速度——在計算機芯片硅片尺寸不變的前提下,上面可以安裝的晶體管數(shù)量卻會越來越多。最新的蘋果手機的A13仿生芯片在比一角硬幣還要小的硅片上寫入了85億個晶體管。這使得芯片能夠以越來越快的速度執(zhí)行越來越多的功能,其應用領域也從計算機擴展到手機、汽車等產品,而現(xiàn)在甚至連燈柱和花園灑水器里都安裝了芯片。
多虧了摩爾定律,現(xiàn)在芯片的設計和制造過程就好像是在一座已經建成的辦公樓上添加新的樓層。仿佛突然之間,在價格不變的前提下,同一塊地皮上就多出了不少大樓可供選擇。但究竟該添加或改進些什么卻不是一件顯而易見的事。像凱勒這樣的設計師必須緊跟任何可能提高處理器性能的硬件或軟件趨勢。他們還必須密切關注電腦用戶究竟在做什么,從而預測他們的需求。更麻煩的是,有時候制造業(yè)的發(fā)展進步也會跟不上新芯片設計的需求。
過去十年里,這一復雜公式中的幾個因素對英特爾產生了不利的影響。該公司一直在盈利——2019年,英特爾的營業(yè)收入達720億美元,利潤達210億美元。但其增長有所放緩,市場份額也出現(xiàn)了下滑。英特爾的部分關鍵產品延遲上市,其重點關注的一些功能并不符合市場的需求,因此不得不放棄向昂貴的5G手機和平板電腦芯片領域進軍。AMD和英偉達則在大型云數(shù)據(jù)中心芯片制造領域趕超了英特爾——該領域是增長最快、最有利可圖的芯片市場之一。而對英特爾未來極為關鍵的一次收購——人工智能芯片初創(chuàng)公司Nervana,也未能取得預期的成功。(自去年12月以20億美元的價格收購了Habana Labs之后,英特爾終止了Nervana處理器的開發(fā)工作,相當于承認收購失敗,并決意重新開始。)
英特爾也在努力解決文化方面的問題。一些人認為,其巨大的規(guī)模和行業(yè)內的主導地位造就了一種官僚文化,導致企業(yè)運轉緩慢、溝通不暢,還近乎病態(tài)地執(zhí)迷于開發(fā)“萬能型”產品,為每款新芯片添加過多的功能。這時的英特爾真正需要的,是一個新的關注點,以及更明智的領導層決策走向。而在芯片制造行業(yè),沒有人比吉姆·凱勒更擅長于專注和決策走向,更沒有人比他更擅長于簡化并解決問題。
________________________________________
芯片設計大神的書單
吉姆·凱勒的同事說他博覽群書,能更好地從全新的角度來審視芯片設計。以下是凱勒最喜歡的一些讀物以及他對于它們的評價。
《在數(shù)學中迷失》,作者:薩賓·霍森菲爾德
“很多我們以為是正確的事情其實是錯誤的,其中也包括不少物理學的內容,這一點非常出人意料?!?/font>
《不羈的靈魂》,作者:邁克爾·A·辛格
“這本書剖析了你內心的想法。當你把自己的想法拆解開來,認真去聆聽的時候,是誰在聆聽呢?接下來你又該怎么做?”
《博伊德:改變戰(zhàn)爭藝術的戰(zhàn)斗機飛行員》,作者:羅伯特·科拉姆
美國空軍飛行員約翰·博伊德“盡管面對著很多不同的問題,但每次都能想出新奇而有趣的解決方案。其中很多在技術和團隊合作方面都很有用?!?/font>
________________________________________
數(shù)字教育
在這個現(xiàn)由斯坦福畢業(yè)生、麻省理工學院多學位畢業(yè)生以及少數(shù)哈佛肄業(yè)生主導的行業(yè)里,凱勒的教育背景顯得很特別。凱勒在戰(zhàn)后費城郊區(qū)的一片開發(fā)地區(qū)長大,由于患有閱讀困難癥,他到四年級時才開始識字。他很感激他的父母——他的父親是通用電氣航空航天公司的一名機械工程師,母親是全職主婦。他們一直支持著他,鼓勵他用好奇心探索世界,卻不會給他過多的壓力。
凱勒后來就讀于賓夕法尼亞州立大學(他回憶說,麻省理工學院看起來好像“太難了”)。他知道自己想從事“科學相關,但又能賺到錢的事”。早些時候,他找到了一份大學各大專業(yè)平均起薪的清單。他最感興趣的兩個領域是生物學和物理學。但在清單里,這兩個專業(yè)的起薪水平都在中間線之下,電氣工程專業(yè)則名列前茅,因此他便選擇了這個專業(yè)(他的第二專業(yè)是哲學)。幸運的是,凱勒的指導教師還負責運營學校的半導體實驗室,所以凱勒很早就有機會接觸到科技行業(yè)最重要的一個領域。
大學畢業(yè)后,凱勒迷茫了一小段時間,然后開始進入那個時代的科技巨頭企業(yè)DEC工作。(《財富》雜志曾在1986年將DEC公司的創(chuàng)始人肯·奧爾森評為“本世紀最具影響力的企業(yè)家”,也許有點為時過早了。)20世紀80年代早期,凱勒剛剛開始工作的時候,DEC發(fā)展得非常快,吞噬著波士頓各處的辦公空間;凱勒最早的辦公室位于一家改建過的超市里。
與很多競爭對手不同,DEC公司選擇自己制造芯片,而不是與外部供應商簽約。這讓凱勒很早就有機會接觸到了計算機開發(fā)從設計到制造再到營銷過程中的每一步。他了解了芯片如何布局,還參與構建了用來繪制芯片地圖的CAD軟件。這應該是他通過自學取得的第一個博士學位。他說:“那時候我有很多工具可以用?!?/font>
DEC公司最知名的產品之一,是一系列名為Alpha的處理器。Alpha處理器運行著所謂的工作站計算機,華爾街交易員、火箭科學家和氣候模型專家都會使用這種強大的計算引擎,它們在計算機世界的食物鏈中處于個人電腦上游的位置。Alpha處理器則是工作站計算機中的速度型選手。《吉尼斯世界紀錄》曾收到過DEC公司提交的幾塊Alpha處理器,并將它們評定為世界上最快的微處理器。凱勒本人參與設計了一款名為Alpha 21264的芯片,部分芯片的運行速度高達一千兆赫,這在當時是聞所未聞的。
盡管實力雄厚,到了20世紀90年代中期,DEC公司還是陷入了困境。該公司未能成功預見個人電腦和服務器會變得夠快夠強,足以令DEC的微型計算機過時。凱勒回憶說:“事實上,當時公司在制造著世界上最快的計算機,同時也在走向倒閉。”這段經歷教會他一個難忘的教訓:如果你制造的東西不是市場想要的,那么你造得再好也無關緊要。
最終,凱勒意識到,DEC的Alpha系列處理器面臨著滅絕級別的挑戰(zhàn)——對手正是英特爾。20世紀90年代中期,凱勒甚至拿到了英特爾當時全新的Pentium Pro(高能奔騰)處理器內部工作原理照片。就在哈德遜市,在英特爾為凱勒舉辦派對的那間房間里,當時的凱勒向同事們解釋了英特爾劃時代性的創(chuàng)造。英特爾長期采用的x86芯片設計此前運行的是來自軟件程序的極其復雜的指令集:而在Pentium Pro中,英特爾找到了可以將程序指令快速轉換成更簡單的代碼塊的方法。英特爾的這項創(chuàng)造令Alpha處理器全部的優(yōu)勢不復存在,而這一天來得比所有人預期的都要快。
當時,英特爾在x86芯片制造領域的第二大競爭對手是AMD。凱勒在AMD也有熟人。他于1998年離開DEC并加入了AMD,此時他已經在DEC工作了14年。目前為止,DEC是他職業(yè)生涯中任職時間最久的一家公司。
在初創(chuàng)公司實現(xiàn)的突破
當時,美國AMD半導體公司的掌門人正是魅力十足的聯(lián)合創(chuàng)始人兼首席執(zhí)行官杰瑞·桑德斯。雖然桑德斯的銷售技巧非常出色,但并不足以領導AMD在與英特爾的市場競爭中穩(wěn)住陣腳。不過,吉姆·凱勒用一款名為K8的芯片,幫助AMD改變了這一狀況。
隨著芯片組的功能日漸強大,凱勒意識到,單獨的芯片和電腦其它部分(如內存和存儲)之間的運算出現(xiàn)了障礙。他還發(fā)現(xiàn),隨著各個部件都變得越來越小,可以將處理器與控制內存和數(shù)據(jù)傳輸?shù)莫毩⑿酒稍谝黄?,從而簡化芯片系統(tǒng)。他還有另一個簡單化的設想:可以把兩塊處理器芯片放在一起,共享電腦主板上的一個插槽,從而加快與內存的交互速度。
在這樣的創(chuàng)新之下,K8芯片不僅適用于普通個人電腦,也可以應用于服務器計算機這一新興領域,在商業(yè)方面取得了相當?shù)某煽?;凱勒所做的集成還將極大地簡化各個服務器的內部設置,為客戶節(jié)省大量資金。
在那之前,桑德斯否決了為服務器開發(fā)芯片的提議,理由是AMD缺少開發(fā)服務器芯片所需的兼容性芯片組的支持生態(tài)系統(tǒng)。但凱勒對K8芯片的設計將主芯片上的芯片組功能整合在一起,巧妙地解決了這些問題。(凱勒在這個過程中一直很謹慎,他回憶說:“我記得,在告訴他這個項目對服務器也有好處之前,我們差不多已經完成了一半的工作?!保┳詈?,同樣重要的一點是,凱勒參與研發(fā)了一種超傳輸總線技術,讓數(shù)據(jù)能在他的新K8芯片和其它服務器之間流動。
K8芯片助力推動了服務器行業(yè)的發(fā)展,注定會取得巨大的成功。經過多次更新之后,超傳輸標準仍然廣泛地應用在服務器上,包括承載了亞馬遜和谷歌云平臺的芯片。
但凱勒沒有在AMD待到能夠慶祝勝利的時候。凱勒在DEC公司的一群前同事在Alpha處理器團隊的工程師丹·多伯普爾的帶領下,成立了一家名為SiByte的初創(chuàng)公司,當K8芯片還在研發(fā)的早期階段時,凱勒收到了他們的邀請。所以,進入AMD僅一年之后,凱勒就跳了槽——這是他相對較短的一段工作時間,也成為了他職業(yè)生涯的一個特點。
對于設計者來說,在某一芯片的研發(fā)還處于這么早的階段時就離開確實很不尋常,凱勒在AMD的部分團隊成員對他的決定感到失望。幾個月后,AMD的研發(fā)團隊在一家高檔法國小餐館舉辦了一場鼓舞士氣的宴會。宴會結束后,團隊成員們當晚就回到了辦公室,決定當場用大錘拆除一面將工程師和團隊內其他成員隔開的墻。
當時擔任AMD首席技術官的弗雷德·韋伯表示,那是一次團隊建設活動,但也是對凱勒離職的失望之情的一種表達。韋伯在接受《財富》雜志采訪時表示:“我絕不會說他沒有做完什么事就走了——他肯定做了——但他早于大多數(shù)人離開了。他更像是一個提前結束項目的人。好消息是,他在前期做了很多事情,確定了一個很好的方向?!?/font>
凱勒在描述自己換工作的動機時則沒那么委婉?!拔沂枪こ處煹墓こ處??!彼f?!肮こ處熛矚g工作。我想把麻煩的問題解決掉,找一些明確的、有趣的問題來解決。”
K8芯片最終于2003年問世。芯片的官方名稱為“皓龍”——但AMD公司還推出了一個名為“大錘”的版本。
陸地、海洋和天空
尋找需要解決的新問題也成為了凱勒閑暇時間的主要特征。在DEC時,隨著資歷和收入的增長,他開始購買一系列高性能轎跑車,并開著它們在路上高速行駛。他還迷上了風帆沖浪運動,經常和DEC公司的同事們踏上從波士頓到夏威夷的長途旅行,尋找最佳的沖浪場地。
某個周末,在DEC時曾在凱勒手下工作的丹·利勃霍茲來到他家,拜訪自己的上司。在那之前,凱勒就已經教過他一些關于帆船的知識,但那天,他從車庫里拿出了一套用于風帆沖浪的裝備,將它交給了如今已成為亞德諾半導體技術公司(Analog Devices)首席技術官的利勃霍茲?!八氪_定我真的會去做?!崩羝澔貞浾f。
凱勒在20世紀90年代末移居加州后,依然在追求海浪和高速公路的刺激。他的一些前同事回憶說,他經常在“自己定價”的旅游網站Priceline上競拍去夏威夷的機票。以低價拍中之后,他就會去毛伊島度過周末。凱勒在蘋果公司工作了四年,公司鼓勵員工在商務旅行時租用環(huán)保汽車,但凱勒卻把這種租賃方式運用到了極限。有一次,他開著租來的混合動力車超速行駛,一位同事立即在凱勒辦公室的門上正兒八經地貼了一張名牌,給他安了個“普銳斯賽車手”的頭銜。
2010年代中期,凱勒又喜歡上了更具技術挑戰(zhàn)性的風箏沖浪運動。他還學會了駕駛特技飛機?!拔曳浅W鹬厮?,但我不會和他一起跳進雙座噴氣式飛機。”約翰·伯恩回憶說。他曾是AMD負責市場和銷售的高管,如今是戴爾公司北美地區(qū)的總負責人。而其他跟著上了飛機的人,則在凱勒帶著他們在北加州的上空翻滾、垂直爬升時,努力克制著不要吐出來。
凱勒拒絕詳細談論對刺激運動的嗜好。但利勃霍茲認為風箏沖浪和凱勒在為芯片設計中棘手的問題尋找看似簡單的解決方案的能力有些聯(lián)系。風箏沖浪“是一項有趣的運動,同時也是一項技術含量極高、強度大、難度大的運動?!彼f,“人在浪花上滑行,但在那表面之下,你所做的事情具有不可思議的深度和復雜性。”
在蘋果吸取的經驗
進入硅谷的選擇使得凱勒一直處于芯片設計領域的中心。2000年11月,專注于研發(fā)網絡處理器的SiByte被博通公司收購,凱勒得到了首席架構師的新職位。在這段時期,凱勒開創(chuàng)了所謂的雙核設計,這象征著簡化事業(yè)的又一次飛躍:本質上包含了同一塊硅片上并排放置的兩個計算芯片的核心,使得生成的芯片更快、更節(jié)能。博通公司將該芯片整合到路由器中,得以在全球范圍內傳輸大量數(shù)據(jù);到了2000年代后期,個人電腦也用上了雙核芯片。
凱勒一直準備著迎接下一個有趣的問題。2004年,他加入了多伯普爾的另一家初創(chuàng)公司——P.A. Semi,這家公司專注于研發(fā)高端個人電腦和服務器的芯片。2008年,他跳槽到了蘋果公司(就在蘋果收購P.A. Semi之前)。對凱勒而言,“庫比蒂諾之主”的吸引力有兩點:一是能向世界上最頑強、最成功的首席執(zhí)行官史蒂夫·喬布斯學習,二是能徹底投身于新興的智能手機領域。
蘋果公司的標志性產品iPhone的前三個版本使用的是三星的芯片:凱勒加入了一個負責設計蘋果公司自己的芯片系列的團隊。iPhone 4這款手機采用的就是凱勒參與研發(fā)的芯片。他對蘋果A6和A7芯片的貢獻最大,而這兩款芯片為iPhone 5和5s提供了動力。這些芯片不只是比競爭對手的芯片更快:蘋果還優(yōu)化了顯卡,使運行更加流暢。相比之下,iPhone的競爭對手就顯得平平無奇了。這些芯片還加快了iPhone的語音處理速度——剛好為蘋果公司新的數(shù)字助理Siri提供了動力。
凱勒并沒有直接為喬布斯工作:他的上司鮑勃·曼斯菲爾德和邁克·卡爾伯特則能直接接觸到那位要求嚴格、時而有些沖動的領導者。不過凱勒表示,他從喬布斯和曼斯菲爾德那里學到了很多關于“高強度工程”的知識?!八麄兊膶W⒈任宜娺^的任何人都更精細?!眲P勒回憶說?!熬退闶撬酪惨_成計劃目標?!眲P勒還記住了喬布斯的一句格言,這句格言也呼應了凱勒許多成功的項目背后的原因:“一旦明白了什么事情應該做,就要一直做下去?!?/font>
到了2012年,凱勒已經準備好帶著新見解回到自己的老東家AMD了。那時候,AMD已經失去了先前因為K8芯片而獲得的技術領先地位,最先進的芯片也遠遠比不上英特爾最好的芯片。凱勒知道其中的緣故。他發(fā)現(xiàn),AMD的芯片設計復雜,難以改進——他曾見過類似的情況,優(yōu)秀的工程師可能會花過多時間忙于優(yōu)化舊的芯片。
凱勒看到了重新開始的機會。芯片制造商的不斷進步使得芯片的速度更快、功能更強,但也帶來了新的問題:如今,最快的芯片往往非常容易過熱,這將限制它們的運行速度。但凱勒發(fā)現(xiàn)了一種新的技術,可以幫助解決問題——使用“小芯片”。
從本質上說,小芯片就是芯片設計界的樂高積木:它們是體積更小、單獨制造的硅塊,可以合在一起組裝成更大、更復雜的芯片。凱勒意識到他可以為計算密集型的活動——例如深度學習,或是圖像豐富的視頻游戲——制造新的芯片,而這只需要把幾個芯片組裝在一起。最終的成果比單個集成芯片更便宜,但功能依舊強大,且模塊化的設置使得凱勒能夠在不產生過多熱量的情況下增強芯片的運算能力。隨著云計算數(shù)據(jù)中心的需求與日俱增,這種芯片也適用于更宏大的配置。
要想將凱勒的想法變成現(xiàn)實,就意味著要從零開始,這引起了AMD公司內部的強烈反對。凱勒回憶說,人們當面告訴他,他會一敗涂地;作為回應,他喚醒了了內心的那個史蒂夫·喬布斯。約翰·伯恩說,在一次市政廳會議上,凱勒變得非常激動,直接對人們的批評作出了回應?!八麑λ麄冋f:‘這就是我們要做的事。我已經搭建好了架構。等著吧,你們會看到成果的?!辈骰貞浾f。“他有那種瘋狂的專注?!?/font>
凱勒設計的第一組小芯片,也就是“銳龍”系列,直到2017年才上市。銳龍?zhí)幚砥鞯膬r格低于英特爾的芯片,并且從某種程度上來說,性能甚至還更好,因此一面世就立馬引起了轟動。2019年時,第三代的銳龍芯片依然由凱勒設計,幾乎在各個指標上都擊敗了競爭對手的芯片。順理成章地,截至4月底,AMD的股價在五年內漲了2303%,投資回報率差不多是英特爾(上漲了78%)的30倍。
一如既往,當銳龍芯片真正上市的時候,凱勒早就離開AMD公司了。
四只輪子上的計算能力
這些年來,凱勒花了很多時間追求跑車的極限速度。但直到2015年,他聽聞一些轉投特斯拉的蘋果前同事的提議,這才開始真正把汽車視為計算領域的挑戰(zhàn)。特斯拉的創(chuàng)始人埃隆·馬斯克想要打造自動駕駛汽車,而這個目標要求每輛車都具備強勁的計算性能。馬斯克嘗試過英特爾旗下Mobileye公司和英偉達的芯片,但兩者都無法讓他滿意。
在一次相當于求職面試的會面中,凱勒說服了馬斯克,稱自己可以設計一款專利芯片,使它運行特斯拉自動駕駛軟件的速度達到競爭對手的10倍。與此同時,馬斯克也讓凱勒相信,自己是那種可以幫助這位芯片設計師在他耀人的簡歷上再添一個“博士學位”的天才領袖。于是在2016年1月,凱勒正式履新。
在特斯拉,凱勒成功的秘訣依舊是“化繁為簡”。在掌握了特斯拉軟件的運行機制后,他發(fā)現(xiàn)可以砍去或縮減英偉達芯片中與特斯拉軟件無關的模塊。2019年,凱勒設計的芯片開始被用于Model 3等車型。根據(jù)特斯拉的測算標準,新車性能是原來的20倍,也是凱勒之前許諾的兩倍。盡管監(jiān)管機構尚未放開對自動駕駛汽車的限制,但特斯拉的技術的確不同凡響:最近,特斯拉基于凱勒設計的芯片推出了一項新功能,Model 3只要識別到紅燈和停車標志就可以自動停車。
凱勒還對特斯拉的生產線非常著迷。他喜歡在位于加州弗里蒙特的車間里閑逛,觀看汽車的組裝過程。這也讓他有了一個發(fā)現(xiàn):許多汽車零部件的壽命都能達到5或10年,但是為軟件提供支持的電子芯片更換頻率更高,可能每過兩三年就得更新一次。于是,凱勒說服特斯拉重新設計了連接計算模塊和其他部件的結構,讓芯片板更加容易拆卸更新。有了新的結構,特斯拉如今才得以承諾凡是購買了自動駕駛功能的車輛,均可免費享受硬件升級服務。
最終加盟英特爾
到了2018年初,英特爾一再推遲新型芯片的量產時間,而且在平板電腦和5G領域舉步維艱,因而越來越迫切地需要工程技術方面的幫助。正是這種艱難的處境吸引了凱勒。他離開特斯拉,并于2018年4月加入了恩怨數(shù)十載的“老冤家”英特爾麾下。
凱勒回憶說:“英特爾讓我想起了DEC。它擁有卓越的技術和團隊協(xié)作(文化),但有時候這種協(xié)作實在太離譜了?!彼麆側肼氂⑻貭柡髤⒓恿艘粓鰰h,會上有50個人就一個在他看來十分簡單的問題展開了辯論?!叭绻@種事發(fā)生在特斯拉,埃隆會把所有人都殺了。”他說。通過他從馬斯克和喬布斯那里得到的啟示,凱勒一直在努力簡化程序、精簡團隊規(guī)模、減少開會次數(shù)。他還換掉了自己所在部門所有負責管理工程師的非技術型經理。凱勒解釋說:“要是把一個你遇到的問題告訴非技術型經理,那么(這個經理)只會又多了一個他解決不了的問題?!?/font>
參加工作近40年后,凱勒在英特爾不僅僅依靠他在數(shù)字設備公司認識的老同事。每加入一家公司,他都在不斷拓展人脈。孫達麗·米特拉是芯片設計初創(chuàng)公司NetSpeed的聯(lián)合創(chuàng)始人。她回憶了自己在2016年造訪特斯拉,向凱勒展示本公司處理器設計方法時的情形。當團隊開始演示第一張幻燈片時,凱勒就皺起了眉頭。米特拉意識到,這是一位芯片領域的內行,他不需要、也不贊賞市場營銷人員的那套鬼話。很快,兩人就開始在白板上深入剖析方才的問題。米特拉回憶道:“吉姆并不關心層次有多高,他憑直覺就達到了那種高度。他想要的是第三層、第四層、第五層?!焙芸欤瑒P勒就成了米特拉的導師。而在2018年9月,英特爾收購了NetSpeed公司,師徒倆也再度聚首。
對于他正在負責的重大芯片改造項目,凱勒并不愿詳談(芯片設計師一般都不愿介紹過多的細節(jié)),而英特爾的新芯片可能要等一至兩年才能投入市場。盡管如此,英特爾公司和凱勒本人都透露了一些芯片結構方面的線索。新的芯片將清晰劃分幾個主要功能,便于公司一次改進一個部分——這種方法也讓人聯(lián)想到凱勒在AMD使用的“小芯片”模型。凱勒還暗示說,在他的個人電腦和服務器芯片設計中,英特爾的低功耗Atom芯片系列可能會占據(jù)更重要的位置。人工智能芯片的性能顯然也被提上了議程:凱勒經常會參加人工智能方面的研討會,他閱讀了大量資料,盡可能地了解未來5年或10年內人工智能應用領域的發(fā)展方向。
英特爾也有可能會使用外部廠商的技術來實現(xiàn)部分功能,而不是像過去那樣全程自主研發(fā)。凱勒所在工程部門的一名副總裁博伊德·菲爾普斯表示:“在凱勒加盟以前,可能我們都不會做出這樣的改變。”
至于凱勒能否像他在那么多老東家那兒一樣,也在英特爾取得成功,分析人士的意見并不一致。伯恩斯坦研究公司的分析師斯泰西·拉斯根說:“他們需要一些重磅產品,這是肯定的,而(凱勒)就是個重磅人物。不知道他會怎么處理那么多歷史遺留問題,過幾年再看看吧?!?/font>
當然了,凱勒向來擅長把歷史遺留問題變得更輕盈、更簡單、更流暢。當美國大部分地區(qū)實行了封鎖措施后,凱勒在他位于硅谷的家中接受了《財富》雜志的電話采訪。他的兩個十幾歲的女兒正忙著應付在線課程,但凱勒并不擔心。他說:“很快就會恢復正常的,人類會解決所有的問題?!倍行┤私鉀Q問題的速度比別人快得多。
全明星芯片陣容
在近40年的職業(yè)生涯里,吉姆·凱勒設計了不少科技行業(yè)最出色、最富有開拓性的微芯片。以下是他的幾款主要作品及其上市年份。
Digital Alpha 21264處理器(1996年)
這是第一款主頻達到500兆赫的芯片,其中,內存緩存達到了史無前例的1千兆赫。為了提高性能,Alpha處理器還開創(chuàng)了亂序執(zhí)行軟件指令的先河。
AMD皓龍?zhí)幚砥鳎?003年)
AMD皓龍是第一批64位處理器。它主要用于服務器,并開創(chuàng)了一種名為HyperTransport的數(shù)據(jù)傳輸標準。這種標準至今仍在云計算領域得到廣泛應用。
蘋果A4處理器(2010年)
凱勒當時專注于提高圖形處理能力。這枚用于初代iPad和iPhone 4的芯片讓蘋果公司的第一款高分辨率“retina”顯示屏成為可能。
特斯拉Autopilot(2019年)
特斯拉表示,公司首款用于自動駕駛的內部人工智能芯片,其運行速度是原有英偉達芯片的20倍。
英特爾Tremont(2020年)
Tremont是第一批受到凱勒影響的英特爾處理器。這種低功耗芯片適用于小型便攜式設備,但也可以擴展到個人電腦。(財富中文網)
譯者:Shog
去年初春的一天,在位于波士頓以西約50公里、馬薩諸塞州哈德遜市的一片田園風光山坡上,半導體巨頭企業(yè)英特爾為公司的30多名設計師、工程師和其他員工舉辦了一場派對。
依照科技行業(yè)的標準,派對上的這群人顯得比較成熟——大部分人都穿著馬球衫、開襟針織衫或襯衣,很少有人穿連帽衫。事實上,他們中的大多數(shù)人在20世紀90年代中期或者更早的時候就進入科技行業(yè)工作了。加入英特爾之前,他們還曾在數(shù)字設備公司(DEC)工作過——現(xiàn)已不復存在的DEC曾是一家開創(chuàng)性的科技巨頭企業(yè),舉辦這場派對的地方以前曾為DEC所有。
派對上最引人注目的人物在一群老朋友中顯得悠然自得。他留著花白的胡子和沖浪手式的長發(fā),身材很結實,看上去更像是一位已退役的橄欖球后衛(wèi)或是職業(yè)沖浪手,而不像是設計了過去30年中最重要的芯片的設計師。他就是吉姆·凱勒,英特爾正在期待他能帶領公司深陷困境的芯片設計業(yè)務重塑往日輝煌。
雖然凱勒在計算機行業(yè)之外鮮為人知,但在芯片制造領域,他絕對算得上是一位超級明星,地位堪比弗蘭克·勞埃德·賴特在建筑領域的建樹,或曾帶領多支球隊獲取總冠軍的籃球教練菲爾·杰克遜在NBA的影響力。凱勒的職業(yè)生涯開始于20世紀80年代,他最早在DEC公司就職,此后一步一步地取得了一系列令人矚目的成就。他的設計幫助AMD公司從微芯片領域的失敗者,發(fā)展成為令對手不可小覷的競爭者。而特斯拉全新的、能識別紅綠燈和停車標志的芯片也是由凱勒設計的。蘋果手機、谷歌云服務器和Xbox游戲機等產品的芯片,其核心技術都受到了凱勒的影響。在多年的工作歷程中,凱勒也得以近距接觸到史蒂夫·喬布斯、埃隆·馬斯克,以及AMD公司創(chuàng)始人杰瑞·桑德斯等科技界傳奇人物的管理風格。
AMD公司的前首席技術官弗雷德·韋伯說:“凱勒就像是科技行業(yè)的阿甘。他一直在做著最有趣的事情,一直在改變著世界。”2018年4月,這位“科技界阿甘”又踏上了新的旅程,離開特斯拉,加入了英特爾公司——而他此前的職業(yè)生涯中一直在同這家芯片行業(yè)巨頭競爭。
凱勒是那場在哈德遜舉辦的派對上最重要的貴賓,連派對的舉辦地點都是他選的。他在派對上四處走動時,人們才驚訝地發(fā)現(xiàn)原來他很少談論與芯片相關的話題。英特爾的服務器計算機架構師德布·伯恩斯坦很久以前也曾和凱勒一起在DEC公司共事。她回憶說,凱勒跟她討論的是關于佛教和物理學的一些看法。(在與《財富》雜志的單獨交流中,凱勒曾提到他從戰(zhàn)斗機飛行員約翰·博伊德的傳記以及精神教導書《不羈的靈魂》[The Untethered Soul]中學到的道理。)伯恩斯坦表示:“凱勒給人的感覺就像是他主動地通過不斷學習,攻讀了一個又一個的博士學位?!?/font>
在談到自己的職業(yè)生涯時,凱勒本人也用教育做了一個類比。他把自己擔任過的職位分成了兩類:有的教會了他很多東西,有的則等著他去“執(zhí)教”。他告訴《財富》雜志:“我在很多完全不同的企業(yè)工作過,我覺得自己在任職過每一家企業(yè)都學到了寶貴的經驗教訓。在加入蘋果和特斯拉的時候,我沒有想要去改變那里的任何事。我加入這樣的企業(yè)是為了改變我自己。它們的工作方式跟世界上的很多其他企業(yè)都不一樣?!?/font>
英特爾則屬于凱勒提到的第二類企業(yè)——等著他去執(zhí)教的企業(yè)。頂著技術、系統(tǒng)架構和客戶部門高級副總裁的頭銜,凱勒目前在英特爾的半導體工程部門管理著1萬多名員工。英特爾的芯片研發(fā)此前遭遇了幾次令人印象深刻的失敗,企業(yè)的市場份額和利潤也因此出現(xiàn)下滑趨勢,而凱勒的工作則將決定英特爾能否重新成為下一代數(shù)據(jù)奇才和設備設計師眼中的霸主企業(yè)。
已在英特爾工作了近25年的公司平臺研發(fā)事業(yè)部主管賽萊什·科塔帕利說:“我們正在經歷著一次轉型,而吉姆絕對是負責掌舵的最合適人選。我從未見過有著如此深厚技術背景的高管,他更有著技術方面的直覺。”
為了更深入地了解凱勒的直覺對他本人的影響,以及他的直覺可能將英特爾帶向何方,《財富》雜志采訪了30位凱勒的現(xiàn)任、前任同事以及競爭對手。(部分受訪者由于未得到雇主許可而要求匿名接受我們的采訪。)通過他們的描述,我們看到了一位極其天才的問題解決者的形象——他的職業(yè)生涯軌跡記錄了過去30年內發(fā)生在計算機領域的若干重大變化。
從“內置英特爾”時代到深陷困境
微處理器設計領域十分重要,且一直在不斷發(fā)展。1965年,英特爾的聯(lián)合創(chuàng)始人戈登·摩爾首次提出了著名的摩爾定律,總結了制造領域技術進步的速度——在計算機芯片硅片尺寸不變的前提下,上面可以安裝的晶體管數(shù)量卻會越來越多。最新的蘋果手機的A13仿生芯片在比一角硬幣還要小的硅片上寫入了85億個晶體管。這使得芯片能夠以越來越快的速度執(zhí)行越來越多的功能,其應用領域也從計算機擴展到手機、汽車等產品,而現(xiàn)在甚至連燈柱和花園灑水器里都安裝了芯片。
多虧了摩爾定律,現(xiàn)在芯片的設計和制造過程就好像是在一座已經建成的辦公樓上添加新的樓層。仿佛突然之間,在價格不變的前提下,同一塊地皮上就多出了不少大樓可供選擇。但究竟該添加或改進些什么卻不是一件顯而易見的事。像凱勒這樣的設計師必須緊跟任何可能提高處理器性能的硬件或軟件趨勢。他們還必須密切關注電腦用戶究竟在做什么,從而預測他們的需求。更麻煩的是,有時候制造業(yè)的發(fā)展進步也會跟不上新芯片設計的需求。
過去十年里,這一復雜公式中的幾個因素對英特爾產生了不利的影響。該公司一直在盈利——2019年,英特爾的營業(yè)收入達720億美元,利潤達210億美元。但其增長有所放緩,市場份額也出現(xiàn)了下滑。英特爾的部分關鍵產品延遲上市,其重點關注的一些功能并不符合市場的需求,因此不得不放棄向昂貴的5G手機和平板電腦芯片領域進軍。AMD和英偉達則在大型云數(shù)據(jù)中心芯片制造領域趕超了英特爾——該領域是增長最快、最有利可圖的芯片市場之一。而對英特爾未來極為關鍵的一次收購——人工智能芯片初創(chuàng)公司Nervana,也未能取得預期的成功。(自去年12月以20億美元的價格收購了Habana Labs之后,英特爾終止了Nervana處理器的開發(fā)工作,相當于承認收購失敗,并決意重新開始。)
英特爾也在努力解決文化方面的問題。一些人認為,其巨大的規(guī)模和行業(yè)內的主導地位造就了一種官僚文化,導致企業(yè)運轉緩慢、溝通不暢,還近乎病態(tài)地執(zhí)迷于開發(fā)“萬能型”產品,為每款新芯片添加過多的功能。這時的英特爾真正需要的,是一個新的關注點,以及更明智的領導層決策走向。而在芯片制造行業(yè),沒有人比吉姆·凱勒更擅長于專注和決策走向,更沒有人比他更擅長于簡化并解決問題。
芯片設計大神的書單
吉姆·凱勒的同事說他博覽群書,能更好地從全新的角度來審視芯片設計。以下是凱勒最喜歡的一些讀物以及他對于它們的評價。
《在數(shù)學中迷失》,作者:薩賓·霍森菲爾德
“很多我們以為是正確的事情其實是錯誤的,其中也包括不少物理學的內容,這一點非常出人意料。”
《不羈的靈魂》,作者:邁克爾·A·辛格
“這本書剖析了你內心的想法。當你把自己的想法拆解開來,認真去聆聽的時候,是誰在聆聽呢?接下來你又該怎么做?”
《博伊德:改變戰(zhàn)爭藝術的戰(zhàn)斗機飛行員》,作者:羅伯特·科拉姆
美國空軍飛行員約翰·博伊德“盡管面對著很多不同的問題,但每次都能想出新奇而有趣的解決方案。其中很多在技術和團隊合作方面都很有用?!?/font>
數(shù)字教育
在這個現(xiàn)由斯坦福畢業(yè)生、麻省理工學院多學位畢業(yè)生以及少數(shù)哈佛肄業(yè)生主導的行業(yè)里,凱勒的教育背景顯得很特別。凱勒在戰(zhàn)后費城郊區(qū)的一片開發(fā)地區(qū)長大,由于患有閱讀困難癥,他到四年級時才開始識字。他很感激他的父母——他的父親是通用電氣航空航天公司的一名機械工程師,母親是全職主婦。他們一直支持著他,鼓勵他用好奇心探索世界,卻不會給他過多的壓力。
凱勒后來就讀于賓夕法尼亞州立大學(他回憶說,麻省理工學院看起來好像“太難了”)。他知道自己想從事“科學相關,但又能賺到錢的事”。早些時候,他找到了一份大學各大專業(yè)平均起薪的清單。他最感興趣的兩個領域是生物學和物理學。但在清單里,這兩個專業(yè)的起薪水平都在中間線之下,電氣工程專業(yè)則名列前茅,因此他便選擇了這個專業(yè)(他的第二專業(yè)是哲學)。幸運的是,凱勒的指導教師還負責運營學校的半導體實驗室,所以凱勒很早就有機會接觸到科技行業(yè)最重要的一個領域。
大學畢業(yè)后,凱勒迷茫了一小段時間,然后開始進入那個時代的科技巨頭企業(yè)DEC工作。(《財富》雜志曾在1986年將DEC公司的創(chuàng)始人肯·奧爾森評為“本世紀最具影響力的企業(yè)家”,也許有點為時過早了。)20世紀80年代早期,凱勒剛剛開始工作的時候,DEC發(fā)展得非??欤淌芍ㄊ款D各處的辦公空間;凱勒最早的辦公室位于一家改建過的超市里。
與很多競爭對手不同,DEC公司選擇自己制造芯片,而不是與外部供應商簽約。這讓凱勒很早就有機會接觸到了計算機開發(fā)從設計到制造再到營銷過程中的每一步。他了解了芯片如何布局,還參與構建了用來繪制芯片地圖的CAD軟件。這應該是他通過自學取得的第一個博士學位。他說:“那時候我有很多工具可以用?!?/font>
DEC公司最知名的產品之一,是一系列名為Alpha的處理器。Alpha處理器運行著所謂的工作站計算機,華爾街交易員、火箭科學家和氣候模型專家都會使用這種強大的計算引擎,它們在計算機世界的食物鏈中處于個人電腦上游的位置。Alpha處理器則是工作站計算機中的速度型選手?!都崴故澜缂o錄》曾收到過DEC公司提交的幾塊Alpha處理器,并將它們評定為世界上最快的微處理器。凱勒本人參與設計了一款名為Alpha 21264的芯片,部分芯片的運行速度高達一千兆赫,這在當時是聞所未聞的。
盡管實力雄厚,到了20世紀90年代中期,DEC公司還是陷入了困境。該公司未能成功預見個人電腦和服務器會變得夠快夠強,足以令DEC的微型計算機過時。凱勒回憶說:“事實上,當時公司在制造著世界上最快的計算機,同時也在走向倒閉?!边@段經歷教會他一個難忘的教訓:如果你制造的東西不是市場想要的,那么你造得再好也無關緊要。
最終,凱勒意識到,DEC的Alpha系列處理器面臨著滅絕級別的挑戰(zhàn)——對手正是英特爾。20世紀90年代中期,凱勒甚至拿到了英特爾當時全新的Pentium Pro(高能奔騰)處理器內部工作原理照片。就在哈德遜市,在英特爾為凱勒舉辦派對的那間房間里,當時的凱勒向同事們解釋了英特爾劃時代性的創(chuàng)造。英特爾長期采用的x86芯片設計此前運行的是來自軟件程序的極其復雜的指令集:而在Pentium Pro中,英特爾找到了可以將程序指令快速轉換成更簡單的代碼塊的方法。英特爾的這項創(chuàng)造令Alpha處理器全部的優(yōu)勢不復存在,而這一天來得比所有人預期的都要快。
當時,英特爾在x86芯片制造領域的第二大競爭對手是AMD。凱勒在AMD也有熟人。他于1998年離開DEC并加入了AMD,此時他已經在DEC工作了14年。目前為止,DEC是他職業(yè)生涯中任職時間最久的一家公司。
在初創(chuàng)公司實現(xiàn)的突破
當時,美國AMD半導體公司的掌門人正是魅力十足的聯(lián)合創(chuàng)始人兼首席執(zhí)行官杰瑞·桑德斯。雖然桑德斯的銷售技巧非常出色,但并不足以領導AMD在與英特爾的市場競爭中穩(wěn)住陣腳。不過,吉姆·凱勒用一款名為K8的芯片,幫助AMD改變了這一狀況。
隨著芯片組的功能日漸強大,凱勒意識到,單獨的芯片和電腦其它部分(如內存和存儲)之間的運算出現(xiàn)了障礙。他還發(fā)現(xiàn),隨著各個部件都變得越來越小,可以將處理器與控制內存和數(shù)據(jù)傳輸?shù)莫毩⑿酒稍谝黄?,從而簡化芯片系統(tǒng)。他還有另一個簡單化的設想:可以把兩塊處理器芯片放在一起,共享電腦主板上的一個插槽,從而加快與內存的交互速度。
在這樣的創(chuàng)新之下,K8芯片不僅適用于普通個人電腦,也可以應用于服務器計算機這一新興領域,在商業(yè)方面取得了相當?shù)某煽?;凱勒所做的集成還將極大地簡化各個服務器的內部設置,為客戶節(jié)省大量資金。
在那之前,桑德斯否決了為服務器開發(fā)芯片的提議,理由是AMD缺少開發(fā)服務器芯片所需的兼容性芯片組的支持生態(tài)系統(tǒng)。但凱勒對K8芯片的設計將主芯片上的芯片組功能整合在一起,巧妙地解決了這些問題。(凱勒在這個過程中一直很謹慎,他回憶說:“我記得,在告訴他這個項目對服務器也有好處之前,我們差不多已經完成了一半的工作?!保┳詈螅瑯又匾囊稽c是,凱勒參與研發(fā)了一種超傳輸總線技術,讓數(shù)據(jù)能在他的新K8芯片和其它服務器之間流動。
K8芯片助力推動了服務器行業(yè)的發(fā)展,注定會取得巨大的成功。經過多次更新之后,超傳輸標準仍然廣泛地應用在服務器上,包括承載了亞馬遜和谷歌云平臺的芯片。
但凱勒沒有在AMD待到能夠慶祝勝利的時候。凱勒在DEC公司的一群前同事在Alpha處理器團隊的工程師丹·多伯普爾的帶領下,成立了一家名為SiByte的初創(chuàng)公司,當K8芯片還在研發(fā)的早期階段時,凱勒收到了他們的邀請。所以,進入AMD僅一年之后,凱勒就跳了槽——這是他相對較短的一段工作時間,也成為了他職業(yè)生涯的一個特點。
對于設計者來說,在某一芯片的研發(fā)還處于這么早的階段時就離開確實很不尋常,凱勒在AMD的部分團隊成員對他的決定感到失望。幾個月后,AMD的研發(fā)團隊在一家高檔法國小餐館舉辦了一場鼓舞士氣的宴會。宴會結束后,團隊成員們當晚就回到了辦公室,決定當場用大錘拆除一面將工程師和團隊內其他成員隔開的墻。
當時擔任AMD首席技術官的弗雷德·韋伯表示,那是一次團隊建設活動,但也是對凱勒離職的失望之情的一種表達。韋伯在接受《財富》雜志采訪時表示:“我絕不會說他沒有做完什么事就走了——他肯定做了——但他早于大多數(shù)人離開了。他更像是一個提前結束項目的人。好消息是,他在前期做了很多事情,確定了一個很好的方向?!?/font>
凱勒在描述自己換工作的動機時則沒那么委婉。“我是工程師的工程師?!彼f?!肮こ處熛矚g工作。我想把麻煩的問題解決掉,找一些明確的、有趣的問題來解決?!?/font>
K8芯片最終于2003年問世。芯片的官方名稱為“皓龍”——但AMD公司還推出了一個名為“大錘”的版本。
陸地、海洋和天空
尋找需要解決的新問題也成為了凱勒閑暇時間的主要特征。在DEC時,隨著資歷和收入的增長,他開始購買一系列高性能轎跑車,并開著它們在路上高速行駛。他還迷上了風帆沖浪運動,經常和DEC公司的同事們踏上從波士頓到夏威夷的長途旅行,尋找最佳的沖浪場地。
某個周末,在DEC時曾在凱勒手下工作的丹·利勃霍茲來到他家,拜訪自己的上司。在那之前,凱勒就已經教過他一些關于帆船的知識,但那天,他從車庫里拿出了一套用于風帆沖浪的裝備,將它交給了如今已成為亞德諾半導體技術公司(Analog Devices)首席技術官的利勃霍茲?!八氪_定我真的會去做。”利勃霍茲回憶說。
凱勒在20世紀90年代末移居加州后,依然在追求海浪和高速公路的刺激。他的一些前同事回憶說,他經常在“自己定價”的旅游網站Priceline上競拍去夏威夷的機票。以低價拍中之后,他就會去毛伊島度過周末。凱勒在蘋果公司工作了四年,公司鼓勵員工在商務旅行時租用環(huán)保汽車,但凱勒卻把這種租賃方式運用到了極限。有一次,他開著租來的混合動力車超速行駛,一位同事立即在凱勒辦公室的門上正兒八經地貼了一張名牌,給他安了個“普銳斯賽車手”的頭銜。
2010年代中期,凱勒又喜歡上了更具技術挑戰(zhàn)性的風箏沖浪運動。他還學會了駕駛特技飛機?!拔曳浅W鹬厮?,但我不會和他一起跳進雙座噴氣式飛機?!奔s翰·伯恩回憶說。他曾是AMD負責市場和銷售的高管,如今是戴爾公司北美地區(qū)的總負責人。而其他跟著上了飛機的人,則在凱勒帶著他們在北加州的上空翻滾、垂直爬升時,努力克制著不要吐出來。
凱勒拒絕詳細談論對刺激運動的嗜好。但利勃霍茲認為風箏沖浪和凱勒在為芯片設計中棘手的問題尋找看似簡單的解決方案的能力有些聯(lián)系。風箏沖浪“是一項有趣的運動,同時也是一項技術含量極高、強度大、難度大的運動。”他說,“人在浪花上滑行,但在那表面之下,你所做的事情具有不可思議的深度和復雜性。”
在蘋果吸取的經驗
進入硅谷的選擇使得凱勒一直處于芯片設計領域的中心。2000年11月,專注于研發(fā)網絡處理器的SiByte被博通公司收購,凱勒得到了首席架構師的新職位。在這段時期,凱勒開創(chuàng)了所謂的雙核設計,這象征著簡化事業(yè)的又一次飛躍:本質上包含了同一塊硅片上并排放置的兩個計算芯片的核心,使得生成的芯片更快、更節(jié)能。博通公司將該芯片整合到路由器中,得以在全球范圍內傳輸大量數(shù)據(jù);到了2000年代后期,個人電腦也用上了雙核芯片。
凱勒一直準備著迎接下一個有趣的問題。2004年,他加入了多伯普爾的另一家初創(chuàng)公司——P.A. Semi,這家公司專注于研發(fā)高端個人電腦和服務器的芯片。2008年,他跳槽到了蘋果公司(就在蘋果收購P.A. Semi之前)。對凱勒而言,“庫比蒂諾之主”的吸引力有兩點:一是能向世界上最頑強、最成功的首席執(zhí)行官史蒂夫·喬布斯學習,二是能徹底投身于新興的智能手機領域。
蘋果公司的標志性產品iPhone的前三個版本使用的是三星的芯片:凱勒加入了一個負責設計蘋果公司自己的芯片系列的團隊。iPhone 4這款手機采用的就是凱勒參與研發(fā)的芯片。他對蘋果A6和A7芯片的貢獻最大,而這兩款芯片為iPhone 5和5s提供了動力。這些芯片不只是比競爭對手的芯片更快:蘋果還優(yōu)化了顯卡,使運行更加流暢。相比之下,iPhone的競爭對手就顯得平平無奇了。這些芯片還加快了iPhone的語音處理速度——剛好為蘋果公司新的數(shù)字助理Siri提供了動力。
凱勒并沒有直接為喬布斯工作:他的上司鮑勃·曼斯菲爾德和邁克·卡爾伯特則能直接接觸到那位要求嚴格、時而有些沖動的領導者。不過凱勒表示,他從喬布斯和曼斯菲爾德那里學到了很多關于“高強度工程”的知識?!八麄兊膶W⒈任宜娺^的任何人都更精細?!眲P勒回憶說?!熬退闶撬酪惨_成計劃目標?!眲P勒還記住了喬布斯的一句格言,這句格言也呼應了凱勒許多成功的項目背后的原因:“一旦明白了什么事情應該做,就要一直做下去?!?/font>
到了2012年,凱勒已經準備好帶著新見解回到自己的老東家AMD了。那時候,AMD已經失去了先前因為K8芯片而獲得的技術領先地位,最先進的芯片也遠遠比不上英特爾最好的芯片。凱勒知道其中的緣故。他發(fā)現(xiàn),AMD的芯片設計復雜,難以改進——他曾見過類似的情況,優(yōu)秀的工程師可能會花過多時間忙于優(yōu)化舊的芯片。
凱勒看到了重新開始的機會。芯片制造商的不斷進步使得芯片的速度更快、功能更強,但也帶來了新的問題:如今,最快的芯片往往非常容易過熱,這將限制它們的運行速度。但凱勒發(fā)現(xiàn)了一種新的技術,可以幫助解決問題——使用“小芯片”。
從本質上說,小芯片就是芯片設計界的樂高積木:它們是體積更小、單獨制造的硅塊,可以合在一起組裝成更大、更復雜的芯片。凱勒意識到他可以為計算密集型的活動——例如深度學習,或是圖像豐富的視頻游戲——制造新的芯片,而這只需要把幾個芯片組裝在一起。最終的成果比單個集成芯片更便宜,但功能依舊強大,且模塊化的設置使得凱勒能夠在不產生過多熱量的情況下增強芯片的運算能力。隨著云計算數(shù)據(jù)中心的需求與日俱增,這種芯片也適用于更宏大的配置。
要想將凱勒的想法變成現(xiàn)實,就意味著要從零開始,這引起了AMD公司內部的強烈反對。凱勒回憶說,人們當面告訴他,他會一敗涂地;作為回應,他喚醒了了內心的那個史蒂夫·喬布斯。約翰·伯恩說,在一次市政廳會議上,凱勒變得非常激動,直接對人們的批評作出了回應?!八麑λ麄冋f:‘這就是我們要做的事。我已經搭建好了架構。等著吧,你們會看到成果的。’”伯恩回憶說?!八心欠N瘋狂的專注?!?/font>
凱勒設計的第一組小芯片,也就是“銳龍”系列,直到2017年才上市。銳龍?zhí)幚砥鞯膬r格低于英特爾的芯片,并且從某種程度上來說,性能甚至還更好,因此一面世就立馬引起了轟動。2019年時,第三代的銳龍芯片依然由凱勒設計,幾乎在各個指標上都擊敗了競爭對手的芯片。順理成章地,截至4月底,AMD的股價在五年內漲了2303%,投資回報率差不多是英特爾(上漲了78%)的30倍。
一如既往,當銳龍芯片真正上市的時候,凱勒早就離開AMD公司了。
四只輪子上的計算能力
這些年來,凱勒花了很多時間追求跑車的極限速度。但直到2015年,他聽聞一些轉投特斯拉的蘋果前同事的提議,這才開始真正把汽車視為計算領域的挑戰(zhàn)。特斯拉的創(chuàng)始人埃隆·馬斯克想要打造自動駕駛汽車,而這個目標要求每輛車都具備強勁的計算性能。馬斯克嘗試過英特爾旗下Mobileye公司和英偉達的芯片,但兩者都無法讓他滿意。
在一次相當于求職面試的會面中,凱勒說服了馬斯克,稱自己可以設計一款專利芯片,使它運行特斯拉自動駕駛軟件的速度達到競爭對手的10倍。與此同時,馬斯克也讓凱勒相信,自己是那種可以幫助這位芯片設計師在他耀人的簡歷上再添一個“博士學位”的天才領袖。于是在2016年1月,凱勒正式履新。
在特斯拉,凱勒成功的秘訣依舊是“化繁為簡”。在掌握了特斯拉軟件的運行機制后,他發(fā)現(xiàn)可以砍去或縮減英偉達芯片中與特斯拉軟件無關的模塊。2019年,凱勒設計的芯片開始被用于Model 3等車型。根據(jù)特斯拉的測算標準,新車性能是原來的20倍,也是凱勒之前許諾的兩倍。盡管監(jiān)管機構尚未放開對自動駕駛汽車的限制,但特斯拉的技術的確不同凡響:最近,特斯拉基于凱勒設計的芯片推出了一項新功能,Model 3只要識別到紅燈和停車標志就可以自動停車。
凱勒還對特斯拉的生產線非常著迷。他喜歡在位于加州弗里蒙特的車間里閑逛,觀看汽車的組裝過程。這也讓他有了一個發(fā)現(xiàn):許多汽車零部件的壽命都能達到5或10年,但是為軟件提供支持的電子芯片更換頻率更高,可能每過兩三年就得更新一次。于是,凱勒說服特斯拉重新設計了連接計算模塊和其他部件的結構,讓芯片板更加容易拆卸更新。有了新的結構,特斯拉如今才得以承諾凡是購買了自動駕駛功能的車輛,均可免費享受硬件升級服務。
最終加盟英特爾
到了2018年初,英特爾一再推遲新型芯片的量產時間,而且在平板電腦和5G領域舉步維艱,因而越來越迫切地需要工程技術方面的幫助。正是這種艱難的處境吸引了凱勒。他離開特斯拉,并于2018年4月加入了恩怨數(shù)十載的“老冤家”英特爾麾下。
凱勒回憶說:“英特爾讓我想起了DEC。它擁有卓越的技術和團隊協(xié)作(文化),但有時候這種協(xié)作實在太離譜了。”他剛入職英特爾后參加了一場會議,會上有50個人就一個在他看來十分簡單的問題展開了辯論?!叭绻@種事發(fā)生在特斯拉,埃隆會把所有人都殺了?!彼f。通過他從馬斯克和喬布斯那里得到的啟示,凱勒一直在努力簡化程序、精簡團隊規(guī)模、減少開會次數(shù)。他還換掉了自己所在部門所有負責管理工程師的非技術型經理。凱勒解釋說:“要是把一個你遇到的問題告訴非技術型經理,那么(這個經理)只會又多了一個他解決不了的問題?!?/font>
參加工作近40年后,凱勒在英特爾不僅僅依靠他在數(shù)字設備公司認識的老同事。每加入一家公司,他都在不斷拓展人脈。孫達麗·米特拉是芯片設計初創(chuàng)公司NetSpeed的聯(lián)合創(chuàng)始人。她回憶了自己在2016年造訪特斯拉,向凱勒展示本公司處理器設計方法時的情形。當團隊開始演示第一張幻燈片時,凱勒就皺起了眉頭。米特拉意識到,這是一位芯片領域的內行,他不需要、也不贊賞市場營銷人員的那套鬼話。很快,兩人就開始在白板上深入剖析方才的問題。米特拉回憶道:“吉姆并不關心層次有多高,他憑直覺就達到了那種高度。他想要的是第三層、第四層、第五層?!焙芸?,凱勒就成了米特拉的導師。而在2018年9月,英特爾收購了NetSpeed公司,師徒倆也再度聚首。
對于他正在負責的重大芯片改造項目,凱勒并不愿詳談(芯片設計師一般都不愿介紹過多的細節(jié)),而英特爾的新芯片可能要等一至兩年才能投入市場。盡管如此,英特爾公司和凱勒本人都透露了一些芯片結構方面的線索。新的芯片將清晰劃分幾個主要功能,便于公司一次改進一個部分——這種方法也讓人聯(lián)想到凱勒在AMD使用的“小芯片”模型。凱勒還暗示說,在他的個人電腦和服務器芯片設計中,英特爾的低功耗Atom芯片系列可能會占據(jù)更重要的位置。人工智能芯片的性能顯然也被提上了議程:凱勒經常會參加人工智能方面的研討會,他閱讀了大量資料,盡可能地了解未來5年或10年內人工智能應用領域的發(fā)展方向。
英特爾也有可能會使用外部廠商的技術來實現(xiàn)部分功能,而不是像過去那樣全程自主研發(fā)。凱勒所在工程部門的一名副總裁博伊德·菲爾普斯表示:“在凱勒加盟以前,可能我們都不會做出這樣的改變?!?/font>
至于凱勒能否像他在那么多老東家那兒一樣,也在英特爾取得成功,分析人士的意見并不一致。伯恩斯坦研究公司的分析師斯泰西·拉斯根說:“他們需要一些重磅產品,這是肯定的,而(凱勒)就是個重磅人物。不知道他會怎么處理那么多歷史遺留問題,過幾年再看看吧?!?/font>
當然了,凱勒向來擅長把歷史遺留問題變得更輕盈、更簡單、更流暢。當美國大部分地區(qū)實行了封鎖措施后,凱勒在他位于硅谷的家中接受了《財富》雜志的電話采訪。他的兩個十幾歲的女兒正忙著應付在線課程,但凱勒并不擔心。他說:“很快就會恢復正常的,人類會解決所有的問題?!倍行┤私鉀Q問題的速度比別人快得多。
全明星芯片陣容
在近40年的職業(yè)生涯里,吉姆·凱勒設計了不少科技行業(yè)最出色、最富有開拓性的微芯片。以下是他的幾款主要作品及其上市年份。
Digital Alpha 21264處理器(1996年)
這是第一款主頻達到500兆赫的芯片,其中,內存緩存達到了史無前例的1千兆赫。為了提高性能,Alpha處理器還開創(chuàng)了亂序執(zhí)行軟件指令的先河。
AMD皓龍?zhí)幚砥鳎?003年)
AMD皓龍是第一批64位處理器。它主要用于服務器,并開創(chuàng)了一種名為HyperTransport的數(shù)據(jù)傳輸標準。這種標準至今仍在云計算領域得到廣泛應用。
蘋果A4處理器(2010年)
凱勒當時專注于提高圖形處理能力。這枚用于初代iPad和iPhone 4的芯片讓蘋果公司的第一款高分辨率“retina”顯示屏成為可能。
特斯拉Autopilot(2019年)
特斯拉表示,公司首款用于自動駕駛的內部人工智能芯片,其運行速度是原有英偉達芯片的20倍。
英特爾Tremont(2020年)
Tremont是第一批受到凱勒影響的英特爾處理器。這種低功耗芯片適用于小型便攜式設備,但也可以擴展到個人電腦。(財富中文網)
譯者:Shog
On a bucolic hillside in Hudson, Mass., about 30 miles west of Boston, on an early spring day last year, the semiconductor giant Intel threw a party for more than 30 of its designers, engineers, and other employees.
It was a pretty mature group, by tech industry standards—lots of polo shirts, cardigans and button-downs, very few hoodies. Indeed, virtually everyone in the crowd had been in tech since the mid-1990s or earlier. Before their Intel days, the partygoers had worked for Digital Equipment Corp., or DEC—a pioneering but long-gone tech giant that had once owned the very building that was hosting the party.
At the center of attention, mingling easily with old friends, was a man with a graying beard, beach-appropriate longish hair, and a muscular build—someone who looked more like a retired linebacker or professional surfer than the architect of some of the most important microchip designs of the past 30 years. The man was Jim Keller, the person Intel is counting on to revitalize its own struggling chip-design enterprise.
Though he is little known outside the computer industry, Keller is a chipmaking superstar, on the level of Frank Lloyd Wright in building architecture—or comparable to NBA coach Phil Jackson for the teams he has led to success. In a career that began at DEC in the 1980s, Keller has racked up remarkable achievements at stop after stop. His designs helped turn Advanced Micro Devices from a microchip also-ran into a respected contender. The autopilot chip in new Teslas that can recognize red lights and stop signs? That’s a Keller design. And the chips in everything from iPhones to Google’s cloud servers to an Xbox gaming console have some of Keller’s work at the core. Along the way, he has studied the management styles of tech’s biggest legends up close, among them Steve Jobs, Elon Musk, and AMD cofounder Jerry Sanders.
“He’s the Forrest Gump of our industry,” says Fred Weber, former chief technology officer of AMD. “He keeps being in the middle of the interesting stuff and making a difference.” And in April 2018, Forrest ran again, so to speak, when Keller left Tesla and joined Intel, the 800-pound gorilla of the chip industry—a company against which he’s been competing for most of his career.
In Hudson, Keller was essentially the guest of honor; he even chose the location. As he circulated, one striking factor was how little he talked about chips. Deb Bernstein, an Intel server-computer architect who also worked with Keller long ago at DEC, recalls Keller engaging her with observations about Buddhism, about physics. (In separate interactions with Fortune, Keller referenced lessons he’s gleaned from the biography of jet-fighter pilot John Boyd and from a book of spiritual teachings called The Untethered Soul.) “It’s like he has been getting Ph.D. after Ph.D., just through his constant quest to learn,” Bernstein says.
Keller himself uses an education analogy when describing his career. He divides his various stops into two categories: Some had lessons for him; some were more in need of lessons from him. “I’ve worked at really different places, and I think I learned valuable lessons at each one,” he tells Fortune. “When I went to Apple and Tesla, I didn’t go there to change anything. I went to change me. They don’t do things like anyone else in the world.”
Intel falls mainly in Keller’s second camp—those that need his lessons. Keller, who has the title of senior vice president in the technology, systems architecture, and client group, now manages about 10,000 employees in Intel’s semiconductor engineering arm. His efforts will help determine whether Intel, whose market share and profits have been sliding in the wake of some high-profile chip disappointments, can regain its preeminence in the eyes of the next generation of data wizards and device designers.
“With the transformation we are going through, Jim is absolutely the right engineering lead to be at the helm,” says Sailesh Kottapalli, Intel’s platform engineering group director, who has been with the company for almost 25 years. “I’ve never had a senior manager that had such an in-depth background and even an intuition about technology.”
To learn more about where that intuition has taken Keller, and where it might take Intel, Fortune interviewed more than 30 of Keller’s current and former colleagues and rivals. (Some asked to speak anonymously because they did not have permission from their employers to talk with us.) Together their accounts painted a picture of an unusually talented problem-solver—one whose career tracks some of the most important changes in computing over the past three decades.
From “Intel inside” to Intel in trouble
The field of microprocessor design is as critical as it is constantly evolving. As a result of the relentless advances in manufacturing first enunciated by Intel cofounder Gordon Moore in 1965 (the famous “Moore’s Law”), computer chips can fit an ever-increasing number of transistors on the same size piece of silicon. The latest iPhone A13 Bionic chip has 8.5 billion transistors written on a silicon wafer smaller than a dime. That has enabled the chips to perform more and more functions more quickly, while spreading from computers to our phones and cars and now to lampposts and garden sprinklers.
Thanks to Moore’s law, the chip-design and manufacturing process is analogous to adding new floors on top of an existing office building. Suddenly, there’s more real estate available at the same price, on the same lot. But it’s not so obvious exactly what to add or improve in the new space. Architects like Keller have to stay on top of any kind of trends in hardware or software that could improve a processor’s performance. They also have to keep an eye on what computer users are doing, to anticipate what they’ll need. And just to complicate matters further, sometimes the manufacturing advances necessary to build a new chip design don’t arrive on time.
Over the past decade, several elements of this complicated formula have played out badly for Intel. The company continues to make lots of money—it earned $21 billion in profits on $72 billion in revenue in 2019—but growth has slowed, and market share has slipped. Key products have been late. Some of the features Intel has chosen to focus on didn’t turn out to be what the market needed, and as a result, expensive forays into chips for tablets and 5G phones have had to be abandoned. AMD and Nvidia have outpaced Intel in building chips for big cloud data centers, one of the fastest-growing and most lucrative chip markets. Perhaps most critical for Intel’s future, a recent key A.I. acquisition, Nervana, didn’t gain traction. (Intel all but shut down the Nervana chip line after it bought Habana Labs last December for $2 billion, essentially admitting defeat and starting over.)
Intel has been grappling with a cultural problem, too. Its huge size and dominance in its sector, some believe, created a bureaucratic culture that moved slowly, communicated poorly, and got caught up in “everything-itis”—trying to put too many features in every new chip. What the company needed was a new focus and smarter direction from the top. And no one in the chip industry is better at focus and direction—at simplifying a problem, the better to solve it—than Jim Keller.
________________________________________
A digital wizard’s analog bookshelf
Jim Keller’s colleagues describe him as someone who reads incredibly widely, the better to approach chip design from fresh angles. Here are some of Keller’s top reads, with his comments.
Lost in Math, by Sabine Hossenfelder
“It’s surprising how much of what we think is true is not actually true. And that includes substantial areas of physics.”
The Untethered Soul, by Michael A. Singer
“This book takes apart what you think. When you take apart what you think and listen to it, who’s listening? And then what do you do?”
Boyd: The Fighter Pilot Who Changed the Art of War, by Robert Coram
U.S. Air Force pilot John Boyd “confronted many different problems and every time came up with something novel and interesting. A lot of it is useful in technology and working with teams.”
________________________________________
A digital education
In an industry now dominated by Stanford grads, triple-degree MIT alumni, and a few famous Harvard dropouts, Keller’s origin story stands out. Growing up in a postwar tract development in the Philadelphia suburbs, Keller couldn’t read until fourth grade, because of his dyslexia. He credits his supportive parents—dad a mechanical engineer at General Electric aerospace, mom staying home—for encouraging his curiosity without pressure.
Keller went to Penn State for college (MIT seemed “way too hard,” he recalls). He knew he wanted to do something “science-y, but also make money.” Early on, he found a list of the average starting salaries of various college majors. Biology and physics, his two top interests, fell below the halfway mark. Electrical engineering was near the top, so that was his choice (combined with a second major in philosophy). Keller’s adviser, fortuitously, ran the semiconductor lab, giving Keller an early exposure to one of the most important fields in tech.
After college and a bit of wandering, Keller wound up at DEC, a tech titan of its era. (Perhaps a bit prematurely, Fortune in 1986 declared cofounder Ken Olsen the “entrepreneur of the century.”) In the early 1980s, when Keller started, the fast-growing company was gobbling up office space all around Boston; one of Keller’s first workspaces was in a converted supermarket.
Unlike a lot of its rivals, DEC built its own chips rather than contracting with outside vendors. That meant Keller was exposed early on to all parts of the computer development process, from design through manufacturing and marketing. He learned about how chips were laid out and helped build CAD software tools used to map them. It was perhaps his first self-taught Ph.D. “I had a pretty big toolkit,” he says.
Among DEC’s most impressive products was a line of chips called Alpha. Alpha chips ran so-called workstation computers, the mighty calculating engines used by Wall Street traders, rocket scientists, and climate modelers—machines that stood above PCs on the food chain. Alphas were the jackrabbits of their class. The company submitted several of the chips to the Guinness Book of World Records, where they earned the title of fastest microprocessor in the world. Keller himself coheaded the design of a chip called the Alpha 21264, parts of which ran as fast as one gigahertz, an unheard-of speed for the time.
But for all that muscle, by the mid-1990s, DEC was suffering as a company. It had failed to anticipate how PCs and servers would eventually become powerful and fast enough to make DEC’s minicomputers obsolete. “It was literally true that we were building the world’s fastest computers and going out of business at the same time,” Keller recalls. And the experience taught him an indelible lesson: If you aren’t making what the market wants, it doesn’t matter how well you’re making it.
Eventually, Keller realized that DEC’s Alpha chips faced an extinction-level challenge—from Intel. At one point in the mid-1990s, Keller obtained a photo of the inner workings of Intel’s then-brand-new Pentium Pro processor. In the same room in Hudson where Intel would later throw Keller’s party, Keller explained Intel’s evolutionary leap to coworkers. Intel’s long-running x86 chip designs previously had run extremely complicated sets of instructions from software programs: In the Pentium Pro, Intel had figured out a way to quickly translate a program’s instructions into much simpler chunks. Sooner than anyone expected, Intel had all but eliminated Alpha’s main advantage.
Keller had connections at Intel’s second-fiddle rival in x86 chipmaking, AMD, and in 1998 he jumped ship, leaving DEC after 14 years. It was by far the longest he’d stay at any workplace in his career.
A breakthrough at an upstart
AMD at the time was run by its charismatic cofounder, CEO Jerry Sanders. Sanders’ great salesmanship skills weren’t enough to keep the company from being pounded in the marketplace by Intel. Keller helped change that, however, with a chip called the K8.
As chips became steadily more powerful, Keller recognized that a bottleneck was developing between the computing done on each chip and other parts of the computer, like the memory and storage. He also realized that as all the various components became smaller, it would be possible to simplify a chip system by integrating the processor with what had been separate chips that controlled memory and data transfers. And he had yet another simple insight: He could put two processor chips close together so they shared a single slot on a computer’s motherboard, a move that would speed up communications with memory.
Innovations like these would make the K8 ideal for use not just in regular PCs but also for the emerging market for server computers, then just catching on with businesses; Keller’s integrations would also greatly simplify the internal setup of every server, saving customers big bucks.
Up until then, Sanders had shot down proposals for AMD to work on chips for servers, arguing that AMD didn’t have the funds to develop the supporting ecosystem of compatible chipsets that those server chips would need. But Keller’s design for the K8 sneakily addressed those objections, by integrating the functions of those chipsets on board the main chip. (Keller still exercised discretion, he recalls: “I think we got, like, halfway through the project before we told him it was also good for servers.”) Last but not least, Keller cowrote a specification known as the HyperTransport spec, to allow data to flow between his new K8 chip and other servers.
The K8 was destined to become a huge success, helping turbocharge the growth of the server industry. Updated multiple times later, the HyperTransport standard is still widely used on servers, including on the chips running the cloud platforms at Amazon and Google.
But Keller didn’t stick around long enough to celebrate the victory. The K8 was still in early phases of development when Keller was invited by a group of former DEC colleagues, led by Alpha engineer Dan Dobberpuhl, to join a startup called SiByte. Keller jumped ship and left after barely a year at AMD—ending the first of several relatively short stints with employers that would become a hallmark of his career.
It was unusual for a designer to leave so early in a chip’s development, and some of Keller’s AMD team were disappointed with his decision. Some months later, the team held a confidence boosting dinner at a fancy French bistro. Afterward, the crew returned to their office and decided to remove a wall separating engineers from others on the team—on the spot, that night, with sledgehammers.
It was a team-building exercise, but also an expression of frustration at Keller’s departure, says Fred Weber, AMD’s chief technology officer at the time. “I would never say he doesn’t finish things—he absolutely does—but he leaves earlier than most,” Weber tells Fortune. “He is more of a front-end-of-a-project guy. The good news is his front ends do so much and set such a good direction.”
Keller describes his itinerant ways slightly less diplomatically. “I’m an engineer’s engineer,” he says. “Engineers like to work. I want to get the bullshit out of the way and get clear, interesting problems to solve.”
The K8 eventually came out in 2003. The chip was officially named Opteron—but AMD marketed one version as Sledgehammer.
Earth, sea, sky
The search for new problems to solve became a major feature of Keller’s leisure time, too. At DEC, as his seniority and income rose, he began buying a series of muscle cars—and using that muscle at high speeds on the roads. He also began pursuing an athletic avocation: windsurfing—making long trips from Boston to Hawaii with DEC colleagues to hit the best surfing sites.
One weekend, Dan Liebholz, who had worked for Keller at DEC, went to visit his boss at home. Keller had already given him some sailing lessons, but that day he pulled one of his windsurfing rigs out of the garage and gifted it to Liebholz, who’s now the chief technology officer of Analog Devices. “He wanted to make sure I’d actually go out and do it,” Liebholz recalls.
The pursuit of waves and highway thrills continued for Keller after he relocated to California in the late 1990s. Some former colleagues recall him regularly bidding for airline tickets to Hawaii on the “name your price” travel website Priceline. When his low bids won, he’d spend the weekend in Maui. Apple, where Keller worked for four years, encouraged employees to rent environmentally friendly cars on business trips, but Keller pushed the pokey rentals to the edge. On one trip, he racked up a speeding ticket while driving a rented hybrid; a coworker promptly mocked up an official-looking nameplate for Keller’s office door that identified his title as “Prius Racer.”
By the mid-2010s, Keller had added the more technically challenging sport of kitesurfing to his oceanic repertoire. He had also learned how to pilot stunt airplanes. “I had the utmost respect, but I wasn’t going to jump into one of those two-seater jets with him,” recalls John Byrne, a former top marketing and sales officer at AMD and now head of North America for Dell. Others did, and they tried not to lose the contents of their stomachs as Keller took them through barrel rolls and steep vertical climbs in the sky over Northern California.
Keller declined to discuss his high-adrenaline hobbies in detail. But Liebholz sees a connection between kitesurfing and Keller’s strength at finding seemingly simple solutions to thorny problems in chip design. Kitesurfing is “a fun thing to do, but it’s also incredibly technical and intense and really hard,” he says. “You’re riding above the waves, but right underneath that is an incredible amount of depth and complexity to what you’re doing.”
Lessons learned at Apple
Moving to Silicon Valley kept Keller close to the center of the action in chip design. SiByte, which focused on network processors, was bought in November 2000 by Broadcom, where Keller took on the title of chief architect. There, Keller pioneered so-called dual-core designs, which represented another leap in simplification: They essentially included the guts of two computing chips side by side on the same piece of silicon, which made the resulting chip faster and more energy efficient. Broadcom incorporated the chip into routers that moved huge amounts of data around the world; later in the decade, dual-core chips would make their way into PCs.
Keller remained restless for the next interesting problem. In 2004, he joined another Dobberpuhl startup called P.A. Semi that focused on chips for high-end PCs and servers. And in 2008 he jumped to Apple (just before Apple acquired P.A. Semi). For Keller, the attraction of the Cupertino juggernaut was twofold: to learn from one of the world’s toughest and most successful CEOs, Steve Jobs, and to immerse himself in the emerging field of smartphones.
The first three versions of Apple’s iconic iPhone ran on chips from Samsung: Keller joined a team tasked with designing Apple’s own line of chips. Starting with the iPhone 4, the phones used designs Keller had worked on. He had his greatest impact on Apple’s A6 and A7 chips, which powered the iPhone 5 and 5s. The designs weren’t just faster than those of competitors: Apple optimized the chips for smoother graphics, making iPhone rivals seem janky by comparison. The chips also accelerated the iPhone’s speech processing—just in time to power Apple’s new Siri digital assistant.
Keller didn’t work directly for Jobs: His bosses Bob Mansfield and Mike Culbert heard from the demanding and sometimes impetuous leader. But Keller says he learned a lot about “intense engineering,” from Jobs and Mansfield. “Their idea of focus is so much narrower than anything I’d ever seen,” Keller recalls. “You would die to hit your schedule.” Keller also absorbed a Jobs aphorism that would resonate with many of Keller’s most successful projects: “Once you know what’s the right thing to do, that’s all you should ever work on.”
By 2012, Keller was ready to put his new insights to work at an old employer—AMD. By then, AMD had lost the technical lead it got from the K8, and its leading-edge chips were far behind Intel’s best offerings. Keller could see why. He found AMD’s designs convoluted and difficult to improve—an example of something he’d witnessed before in the industry, when good engineers could get caught up optimizing their older chip designs for too long.
Keller saw an opportunity to start over with a clean slate. Chip manufacturers’ continual advances were making chips faster and more powerful, but they were also creating new problems: The fastest chips now often came very close to overheating, putting a ceiling on how much faster they could perform. But Keller had spotted a new technical advance that could help address the problem—chiplets.
Chiplets are essentially the Lego bricks of chip design: They’re smaller, separately manufactured blocks of silicon that can be snapped together to assemble a bigger, more complex chip. Keller realized that he could build new chips for highly computing-intensive activities—deep learning, for example, or graphics-rich video games—by snapping together a few chiplets. The resulting design would be less expensive than a single integrated chip, but still powerful—and the modular setup allowed Keller to add computing power without generating too much heat. The chiplets could also work in larger configurations for the huge servers that cloud computing data centers needed in growing numbers.
Implementing Keller’s idea would mean starting from scratch, and that fact evoked substantial internal opposition at AMD. Keller recalls people telling him to his face that he was going to flop; he responded by channeling his inner Steve Jobs. At one town hall meeting, says John Byrne, Keller became agitated enough to face down critics directly. “He told them, ‘This is what we’re doing. I’ve built the framework. Wait and you’ll see the outcome,’” Byrne recalls. “He had that maniacal focus.”
The first chips from Keller’s chiplet design, known as the Ryzen line, didn’t hit the market until 2017. They immediately created a stir by undercutting Intel chips on price and, in some cases, beating Intel on performance. By 2019, the third generation of Ryzen chips, still drawn from Keller’s design, was stomping the competition on nearly all measures. Not coincidentally, AMD’s stock price rose 2,303% in the five years through the end of April—a return almost 30 times as great as Intel’s 78%.
Characteristically, Keller was long gone by the time the Ryzen hit the market.
Computing on four wheels
Keller spent plenty of time pushing the speed limit in cars over the years. But he hadn’t really thought of cars as a computing challenge until 2015—when he heard an overture from some former Apple colleagues who had moved on to Tesla. Tesla founder Elon Musk wanted to build self-driving cars—a goal that required each car to carry substantial internal computing power. Musk had tried chips from Intel’s Mobileye and Nvidia, but still wasn’t satisfied.
In what amounted to his job interview, Keller convinced Musk that he could design a proprietary chip to run Tesla’s autopilot app 10 times as fast as the competition’s. At the same time, Musk convinced Keller that he was the kind of talented leader who could help the chip designer add another “Ph.D.” to his metaphorical résumé. Keller started in January 2016.
At Tesla, Keller’s key to success, once again, was simplification. Once he understood how Tesla’s software would operate, Keller found that he could leave out or minimize components that Nvidia included in its chips that weren’t as relevant to Tesla’s software. Keller’s chips began to be included in Tesla’s Series 3 and other models in 2019. By the company’s benchmarks, it offered a 20X performance jump, double what Keller had promised. Although regulators haven’t yet unleashed self-driving cars, the Tesla technology is impressive: A recent addition running on Keller’s chip design helps the Tesla 3 automatically stop at red lights and stop signs.
Keller also found himself fascinated by Tesla’s manufacturing operation; he liked to wander the factory floor in Fremont, Calif., and watch the cars being assembled. Observing the process led Keller to a revelation: While many parts of a car are meant to last five or 10 years, the electronic chips that powered the software would need to be updated more frequently, maybe every two or three years. Keller persuaded Tesla to reengineer how the computing components connected to the rest of the car, enabling the company to more easily swap out a chip board and update it. This new modularity now enables Tesla to promise free hardware upgrades for customers who pay for its self-driving feature.
Intel, at last
By the beginning of 2018, Intel was growing desperate for engineering help, amid delays in bringing new chips to market and the struggles of its tablet and 5G efforts. It was the very depth of those struggles that attracted Keller, who left Tesla and joined Intel, his on-and-off rival for decades, in April 2018.
“Intel reminds me of Digital [DEC],” Keller says. “It has the technical excellence and [culture of] collaboration, but sometimes the collaboration goes way too far.” One meeting he attended early on had 50 participants debating what he considered a simple topic. “At Tesla if that ever happened, Elon would just kill everybody,” he says. Drawing on insights he gained from both Musk and Jobs, Keller has been seeking to streamline procedures, reduce the size of teams, and cut back on meetings. He has also replaced all the nontechnical managers overseeing engineers in his division. “If you take a nontechnical manager a problem you’re having, [the manager] just has one more problem he can’t solve,” Keller explains.
Nearly 40 years into his career, Keller isn’t just relying on old relationships with the DEC gang at Intel. He’s been constantly expanding his network at every stop. Sundari Mitra, cofounder of a chip-design startup called NetSpeed, recalls visiting Tesla in February 2016 to present the company’s processor-design methodology to Keller. When the team’s first slide went up, Keller grimaced. Mitra sensed a fellow chip intellectual who didn’t need or appreciate the marketing chatter in her deck—and the two quickly began dissecting the problem in a deeper way on a whiteboard. “Jim doesn’t care about the high level, he gets that intuitively,” Mitra recalls. “He wanted the third level and the fourth and the fifth level.” Keller soon became Mitra’s mentor—and in September 2018, Intel acquired NetSpeed, reuniting the student and pupil.
Keller won’t talk much about the massive chip redesign he’s overseeing—chip designers seldom do—and Intel’s new chip probably won’t be ready for another year or two. Still, both Intel and Keller have scattered some clues about how the chips might work. The new chips will cleanly separate major functions, to make it easier for the company to improve one section at a time—an approach that evokes the chiplet model Keller used at AMD. Keller also hints that Intel’s low-power Atom line of chips may figure more prominently in his future designs for PCs and servers. Artificial intelligence capabilities are clearly on the agenda: Keller has been haunting A.I. symposia and reading prodigiously, learning everything he can about where the field of A.I. applications is likely to go for the next five or 10 years.
Intel may also turn to outside vendors’ technology for some features, instead of always inventing its own solutions. “Prior to Jim coming, I don’t think that’s a transformation that we would have undertaken,” says Boyd Phelps, a vice president in Keller’s engineering group.
Analysts are split over whether Keller will be as successful at Intel as he’s been at so many of his past stops. “They need something big, that’s for sure, and he’s a big name,” says Bernstein Research analyst Stacy Rasgon. “I don’t know how he’s going to deal with all the legacy baggage. Check back in a few years.”
Of course, Keller has a history of converting legacy baggage into something lighter, simpler, and sleeker. After most of the country went into lockdown, Keller spoke with Fortune by phone from his home in Silicon Valley. His two teenage daughters were busy grappling with online classes, but Keller wasn’t worried about them. “These things normalize so fast,” he said. “Humans figure everything out.” And some humans do that much faster than others.
________________________________________
An all-star chip lineup
Over a nearly 40-year career, Jim Keller has designed some of the tech industry’s most impressive and groundbreaking microchips. Here are a few, along with the year they reached the market.
Digital Alpha 21264 (1996)
The first chip to run at 500 MHz, with a memory cache that hit 1 GHz—unheard-of speeds for its time. The Alpha also pioneered running software instructions out of order, to increase performance.
AMD Opteron (2003)
One of the first 64-bit processors, Opteron fit in servers and pioneered a data communications standard called the HyperTransport that’s still widely used in cloud-computing today.
Apple A4 (2010)
Keller focused on improving graphics capability. The chip that powered the original iPad and the iPhone 4 enabled Apple’s first high-resolution “retina” displays.
Tesla Autopilot (2019)
Tesla says that its first in-house A.I. chip, designed to enable autonomous driving, performs 20 times as fast as the Nvidia chip it replaced.
Intel Tremont (2020)
One of the first Keller-influenced designs from Intel, the low-power chip is intended to run small portable devices but could scale up to PCs.