成人小说亚洲一区二区三区,亚洲国产精品一区二区三区,国产精品成人精品久久久,久久综合一区二区三区,精品无码av一区二区,国产一级a毛一级a看免费视频,欧洲uv免费在线区一二区,亚洲国产欧美中日韩成人综合视频,国产熟女一区二区三区五月婷小说,亚洲一区波多野结衣在线

首頁 500強(qiáng) 活動 榜單 商業(yè) 科技 領(lǐng)導(dǎo)力 專題 品牌中心
雜志訂閱

人工智能招聘:提升多元化的四種方式

Anne Fisher
2019-06-10

人工智能技術(shù)新的排列組合如雨后春筍般層出不窮,在招聘領(lǐng)域尤其如此。

文本設(shè)置
小號
默認(rèn)
大號
Plus(0條)

圖片來源:portishead1—Getty Images/iStockphoto

人工智能是一個“黑匣子”——神秘而且令人生畏。同時,人工智能技術(shù)新的排列組合如雨后春筍般層出不窮,在招聘領(lǐng)域尤其如此。然而,盡管雇主希望自己的員工組成更加多元包容,但人工智能行業(yè)本身卻因為幾乎都是白人男性而受到抨擊。例如,紐約大學(xué)研究人員最近的一項研究指出,在像Facebook和谷歌這樣的科技巨頭中,女性和有色族裔員工的占比非常小,整個企業(yè)都面臨著“多元化危機(jī)”。

諷刺的是,如果能夠正確使用人工智能,它們“非常有希望在決策方面比人類做得更好,特別是在招聘工作中。”亞歷山德拉·莫伊西洛維奇說。莫伊西洛維奇是IBM的人工智能研究員,擁有16項機(jī)器學(xué)習(xí)專利,協(xié)助開發(fā)了可以用于檢查其他算法是否存在無意偏差的算法。她指出,想要利用人工智能鼓勵多元化,重要的一點是要確保構(gòu)建黑匣子的團(tuán)隊本身就是一個多元化的團(tuán)隊,確保這個團(tuán)隊擁有不同背景和不同觀點。

“人工智能工具是否優(yōu)秀,是否公正,取決于我們輸入的數(shù)據(jù)?!蹦廖髀寰S奇說,“人工智能不是要取代人類的智慧,而是進(jìn)行補充。”

人工智能可以幫助雇主找到并吸引來自于不同性別、年齡和種族的新員工。以下是四種主要方式:

人工智能知道如何針對最優(yōu)秀的候選人宣傳

招聘信息中的文字表述很重要,不僅因為文字表述經(jīng)常無意中阻止一些潛在的雇員申請空缺崗位。“我們?nèi)祟愔荒鼙M最大努力猜測怎么說會引起求職者的共鳴,但經(jīng)常猜錯?!比斯ぶ悄芄綯extio的聯(lián)合創(chuàng)始人及首席執(zhí)行官基蘭·斯奈德說。

Textio公司用了大約5億個真實招聘廣告的數(shù)據(jù),讓人工智能分析這些廣告在現(xiàn)實中得到的回應(yīng),建議公司應(yīng)該使用和避免使用哪些詞語。例如,對于客戶eBay而言,“原先的經(jīng)驗”這一短語使男性申請人增加了50%?!暗?,‘表現(xiàn)出來的能力’卻多吸引了40%的女性,即使它和‘原先的經(jīng)驗’說的差不多是同一件事?!彼鼓蔚抡f。

不同性別、種族、民族中性的語言“變化很快。沒有‘請使用這10個詞’的詞匯清單。”她補充道,“但恰當(dāng)?shù)脑~可以在合適的時機(jī)吸引最多元化的申請者。”

人工智能擴(kuò)大了符合標(biāo)準(zhǔn)的申請者范圍

人工智能還能夠在鞭長莫及的區(qū)域建立更廣泛的網(wǎng)絡(luò)。以校園招聘為例,雇主只能派這么多人去一部分校園進(jìn)行招聘——但如果完美的求職者沒有去這場人才招聘會,或干脆就去了另外一所學(xué)校呢?

人工智能公司HireVue(客戶包括英特爾、甲骨文、道瓊斯、唐恩都樂品牌等)的首席技術(shù)官洛倫·拉森表示,“非著名大學(xué)里的某名學(xué)生可能和‘正確的’大學(xué)里的學(xué)生一樣好,甚至更好,而你可能根本就不會派人去這所大學(xué)校招?!?/p>

拉森說,在過去,這名學(xué)生得不到機(jī)會。但是通過人工智能獲取潛在求職者的信息,并使用視頻聊天等現(xiàn)代工具,你可以輕松與他們?nèi)〉寐?lián)系。“通過這種方式,可以讓更多優(yōu)秀的人進(jìn)入系統(tǒng)里,這樣你就可以‘看到’更多元化的求職群體,并進(jìn)行評估?!崩a充道。

人工智能是伯樂

簡歷是有效的招聘工具,但是“如果你專注于某位候選人簡歷上的內(nèi)容,你就可能忽視很多其他人?!盋areerBuilder的首席執(zhí)行官伊利尼亞·諾沃謝利斯基說道,該公司的領(lǐng)導(dǎo)層現(xiàn)在擁有70%的女性和少數(shù)族裔,比諾沃謝利斯基在2017年加入時高了40%。

CareerBuilder網(wǎng)站使用人工智能幫助雇主和求職者進(jìn)行最優(yōu)配對,其數(shù)據(jù)庫包括超過230萬個招聘職位、1000萬個職位、13億技能點。算法完全瞄準(zhǔn)某一工作所需的技能,找到有潛力、擁有這項技能的候選人——但這些候選人可能正在根據(jù)自己的背景申請其他工作。

“有些人簡歷中的大標(biāo)題或最近一份工作不一定能夠代表他們還可以做其他什么事情?!敝Z沃謝利斯基說。例如,客戶服務(wù)代表需要耐心和解決問題的能力,“我們發(fā)現(xiàn)家庭醫(yī)療保健工作者擁有這些技能。沒有人工智能,是不可能這么配對的?!?/p>

嚴(yán)格關(guān)注技能“自然會促進(jìn)多樣化,因為招聘標(biāo)準(zhǔn)對于每個候選人來說都是完全相同的,不分性別、種族、民族、年齡或其他任何因素。人工智能將所有無關(guān)緊要的東西剝離。”HireVue的洛倫·拉森說。大量的研究證實,在所謂的結(jié)構(gòu)化面試中,面試人員詢問每個候選人完全相同的問題,尋找完全相同的答案,能夠最有效地消除無意識偏見。

問題是,人類面試官幾乎做不到?!拔覀儠X得無聊,會走神,或者突然覺得牙疼?!崩f,“人工智能從來不會。”

人工智能可以糾正自己的偏見

人們在工作時會不自覺地帶入自己的經(jīng)歷、假設(shè)和偏好,其中一些怪癖尤其難以改變,特別是當(dāng)他們潛伏在潛意識中時。相比之下,即使是最聰明的機(jī)器(至少到目前為止)也只能學(xué)習(xí)和運用程序員裝進(jìn)去的內(nèi)容。其中可能包括,強(qiáng)調(diào)要歡迎所有年齡、性別和人種的最佳候選人。

“人類通常不能完全解釋自己的決定,因為我們一定程度上依靠‘直覺’。”拉森說,“但是通過算法,我們可以查明無意的偏差存在于什么地方?!?/p>

HireVue的團(tuán)隊在一家客戶公司嘗試了一種算法,結(jié)果發(fā)現(xiàn)該算法更青睞具有深沉音色的求職者,因此,該算法在初步測試中,一直選擇男性而不是那些同樣稱職的女性。與此同時,早期其他一些人工智能系統(tǒng)因為在視頻采訪中偏好淺膚色的求職者而招致批評。

拉森說,程序員已經(jīng)學(xué)會發(fā)現(xiàn)并修復(fù)類似這種情況,她還說“數(shù)據(jù)驅(qū)動技術(shù)讓我們有機(jī)會以前所未有的方式實現(xiàn)公平?!?/p>

這并不是說人工智能可以讓人力資源專業(yè)人士和招聘經(jīng)理退位。管理公司兼容并包的政策、與有潛力的候選人建立良好關(guān)系、確保人工智能在做本職工作,這些事情只能由人來完成。

正如IBM的亞歷山德拉·莫伊西洛維奇所說:“所有的研究都表明,人類和人工智能相互配合比單打獨斗更有效?!?span>(財富中文網(wǎng))

譯者:Agatha

Artificial intelligence can a “black box”—mysterious and more than a little intimidating. Meanwhile, new permutations of the tech are sprouting up like mushrooms, especially for recruiting and hiring. Yet as employers have increasingly tried to make their workforces more diverse and inclusive, the A.I. industry itself has taken some flak for being almost exclusively white and male. For instance, a recent study by New York University researchers points out that at tech giants like Facebook and Google, such tiny percentages of employees are female or nonwhite that the whole business is suffering a “diversity crisis.”

The irony there is that A.I., used correctly, has “a shot at being better at decision-making than we humans are, particularly in hiring,” says Aleksandra Mojsilovic. A research fellow in A.I. at IBM, Mojsilovic holds 16 patents in machine learning, and helped develop algorithms that can check other algorithms for unintended bias. An essential part of using A.I. to encourage diversity, she notes, is making sure the teams that build what goes into the black box are themselves a diverse group, with a variety of backgrounds and points of view.

“Any A.I. tool can only be as good—and as impartial—as the data we put in,” Mojsilovic says. “It’s not about replacing human intelligence, but rather about complementing it.”

A.I. has helped companies find and attract new hires of all sexes, ages, and ethnicities. Here are four main ways it’s helped them to do that:

A.I. knows how to speak to your best candidates

The words in job postings matter, not least because they often unwittingly discourage some potential hires from applying. “We as humans take our best guess at what will resonate with job seekers, but we’re often wrong,” notes Kieran Snyder, cofounder and CEO of the A.I. firm Textio.

Using a dataset of about 500 million actual job ads, and A.I. that analyzes the real-life responses they got, Textio advises companies on which words to use—and avoid. At client eBay, for instance, the phrase “prior experience” drew a 50% increase in male applicants. “But the phrase ‘demonstrated ability’—even though it means essentially the same thing—attracted 40% more women,” Snyder says.

Language that is neutral across sexes, races, and ethnicities “changes rapidly. There is no ‘use-these-10-words’ list,” she adds. “But the right word at the right moment does attract the most diverse possible group of applicants.”

A.I. widens the pool of eligible workers

A.I. also has the power to cast a wider net across unmanageable geographies. Take, for example, campus recruiting. Employers can send only so many humans to a limited number of campuses—but what if the perfect hire skipped the job fair, or goes to a different school entirely?

“A student at an obscure college where you’d never send a recruiter could be every bit as good as, or better than, graduates of the ‘right’ schools,” observes Loren Larsen, chief technology officer at A.I. firm HireVue, which lists Intel, Oracle, Dow Jones, Dunkin’ Brands, and many others among its clients.

In the old days, says Larsen, this student wouldn’t have gotten a second sniff, let alone a first. But by sourcing the leads with A.I., and using modern tools like video chatting, you can reach them with ease. “This way, a lot more people are let into the system on their merits, so you get to ‘meet’ and assess a much more diverse group of candidates,” adds Larsen.

A.I. has an eye for talent—and skill sets

Resumes are nice, but “if you focus on what it says on someone’s resume, you risk overlooking huge numbers of people,” says Irinia Novoselsky, CEO of CareerBuilder, whose top leadership is now 70% women and minorities—up from 40% when Novoselsky joined in 2017.

The site uses A.I. to help employers and job hunters find the best match, with a database that includes more than 2.3 million job postings, 10 million job titles, and 1.3 billion skills. The algorithms zero in on exactly what skills a job requires, and find promising candidates who have them—but who may, based on their background, be applying for a different job altogether.

“Someone’s resume headline or most recent role may not necessarily translate into what else they can do,” says Novoselsky. Customer service reps need, for instance, patience and problem-solving ability, and “we’ve found that home health care workers share those skills. Without A.I., making those matches would have been impossible.”

A strict focus on skills “naturally leads to more diversity, because the hiring criteria are exactly the same for each and every candidate, regardless of sex, race, ethnicity, age, or anything else. A.I. strips out all that extraneous stuff,” says Loren Larsen at HireVue. Reams of research confirm that so-called structured interviews, where interviewers ask precisely the same questions of each candidate and look for precisely the same checklist of answers, work best at eliminating unconscious biases.

The catch is, human interviewers rarely do them. “We get bored, or we’re distracted, or we have a toothache,” Larsen notes. “A.I. never does.”

A.I. can correct its own biases

People can’t help bringing their own experiences, assumptions, and preferences with them to work in the morning, and some of those quirks—especially when they lurk in the subconscious—are notoriously slow to change. By contrast, even the smartest machines (at least so far) can learn and apply only what programmers install in them. That can include an emphasis on welcoming the best-qualified candidates of all ages, sexes, and colors.

“Humans often can’t fully explain their decisions, because they’re going partly on ‘gut feel,'” says Larsen. “But with algorithms, we can pinpoint exactly where an unintentional bias has sneaked in.”

At one client company, HireVue’s team tried out an algorithm that turned out to be biased toward job applicants with deep voices so that, in preliminary testing, it kept selecting men over women who were just as qualified. Meanwhile, other, earlier A.I. systems have drawn fire for favoring light skin tones over darker ones in video interviews.

Larsen says programmers have learned to spot—and fix—that sort of thing, adding that “data-driven technology gives us the chance to keep getting more fair in ways that weren’t possible before.”

That’s not to say that A.I. can ever push human resource professionals and hiring managers to the sidelines. The tasks of managing company policy on inclusion, building great relationships with promising candidates, and making sure that A.I. is doing its job can only be done by people.

As Aleksandra Mojsilovic at IBM puts it, “All the research shows that humans and A.I., working together, are far more effective than either alone.”

財富中文網(wǎng)所刊載內(nèi)容之知識產(chǎn)權(quán)為財富媒體知識產(chǎn)權(quán)有限公司及/或相關(guān)權(quán)利人專屬所有或持有。未經(jīng)許可,禁止進(jìn)行轉(zhuǎn)載、摘編、復(fù)制及建立鏡像等任何使用。
0條Plus
精彩評論
評論

撰寫或查看更多評論

請打開財富Plus APP

前往打開
熱讀文章
97久久久久久精品无码毛片| 久久精品国产99精品国产2021| 一区二区三区内射美女毛片| 成人免费一区二区无码视频| 国内大量揄拍精品视频| 一区二区三区成人欧美日韩在线观看久| 成人动漫一区二区| 粗大的内捧猛烈进出小视频| 欧美精品成人一区二区在线观看| 最新欧美国产亚洲一区| 草草久久久无码国产专区| 亚洲精品国产电影| 欧美日韩免费一区二区三区播放| 国产性猛交╳XXX乱大交| 久久无码AV中文出轨人妻| 无码少妇一区二区三区视频| 久也在线中文字幕手机在线| 377人体粉嫩噜噜噜| 午夜寂寞成人网站在线观看| 韩国精品韩国专区久久| 久久久精品天堂无码中文字幕| 国产精品国产三级大全在线观看| 国产人久久人人人人爽| 国产A∨国片精品青草视频| avtt中文字幕无码一区| 国产成人精品区在线观看| 小宝极品内射国产在线| 办公室特殊服务2在线观看| 二级韩国片完整版日韩电影| 91中文国产一区二区| 欧美XXXX色视频在线观看免费| 欧美黑人疯狂性受XXXXX喷水| 看一级毛片一区二区三区免费| 久久国产成人午夜AV影院无码| 国产高清不卡无码AV成人一二三区| 亚洲国产中文成人无码影片在线| 久久天天躁夜夜躁狠狠| 国产亚洲日韩a欧美在线观看| 亚洲AV无码成人精品区日韩| 国产精美欧美一区二区三区| 天堂8在线天堂资源BT|