取一段膠帶貼在鉛筆芯上,撕下膠帶,上面或許還粘著一層薄薄的石墨片。對折膠帶,再撕開,把粘著的石墨薄片分離開來。重復10到20次。如果你的技術夠好,那么恭喜你,你得到了目前世上最薄、幾乎也是最堅硬的材料。
用膠帶粘出石墨烯確有其事:2004年,來自英國曼徹斯特大學(University of Manchester)的安德烈·海姆和康斯坦丁·諾沃肖洛夫首次成功分離出了只有一個原子厚度的二維碳材料:石墨烯。這兩位物理學家也因此而獲得了2010年的諾貝爾物理學獎。
石墨烯具有許多得天獨厚的性質,正如那些加入石墨烯材料的新興產品所宣稱的那樣:耳機的音質更棒、智能手機的散熱性能更好、路面的強度更高,洗發(fā)水的包裝也變得更加環(huán)保。
石墨烯不僅是世界上最薄、強韌度第二(一維碳材料carbyne強度比石墨烯更高)的材料,而且輕若無物、幾乎完全透明。經過不同的處理方式,無論是彈性還是抗斷裂能力方面,石墨烯均表現(xiàn)優(yōu)異。除此之外,石墨烯還是數(shù)一數(shù)二的導電導熱材料,在處理液體時能夠形成可調型過濾器甚至是完全阻隔的屏障。而且,正如海姆和諾沃肖洛夫示范的那樣,石墨烯的制備工藝非常簡單。
石墨烯材料的優(yōu)異性能,再加上諾貝爾獎得主的精彩故事加持,十多年前關于石墨烯的宣傳可謂是鋪天蓋地。但需要做的工作還有很多,比如找出石墨烯的最佳制備方法、石墨烯的商業(yè)化應用、逐步構建新市場等等。于是,石墨烯概念炒作慢慢歸于沉寂。
然而,現(xiàn)在我們似乎真的要迎來屬于石墨烯的時代。
石墨烯“發(fā)聲”
加拿大初創(chuàng)公司Ora研發(fā)出了首款石墨烯耳機GQ。洛杉磯愛樂樂團(Los Angeles Philharmonic)的音樂總監(jiān)古斯塔夫·杜達梅爾發(fā)表聲明公開支持這款耳機,他熱情洋溢地說:“耳機里傳來的音樂音質如同站在交響樂團指揮臺上聽到的那般絲絲入扣?!?
石墨烯強度高、質量輕,阻尼性能優(yōu)越:只要切斷通過石墨烯的電流,石墨烯就會隨即停止振動。利用這些優(yōu)點,Ora研發(fā)出了用于耳機和揚聲器的石墨烯材質的振膜。就連諾沃肖洛夫本人也稱贊該公司確保了“石墨烯正式走出實驗室,進軍音頻領域?!?/p>
ORA的聯(lián)合創(chuàng)始人阿里·平卡斯稱:“近二十年來,從理論上來講,石墨烯的性質決定了這是一款制作揚聲器振膜‘圣杯’一樣的材料?!彼忉屨f,通常情況下,揚聲器設計師必須在剛度、輕巧性或阻尼方面降低要求。
平卡斯稱,公司將與知名筆記本電腦和智能手機品牌合作,為它們的設備制造體積更小、更響亮的揚聲器,并于2022年推出部分設計。但因為簽署了保密協(xié)議,他并未公開合作的品牌。
先進技術市場調研公司IDTechEx的首席分析師理查德·柯林斯表示:“橫空出世的石墨烯是一種可以改變世界的神奇材料。老實說,如果你跟與石墨烯相關的人士交談,大多數(shù)人仍然認為石墨烯會改變一切?!?/p>
“事實上,十年間也有很多公司在嘗試應用石墨烯。許多終端用戶在探索這種材料。從實際角度看,只有到現(xiàn)在和未來幾年我們才慢慢接近石墨烯應用的轉折點。”
石墨烯“上路”
從音頻到瀝青路面:石墨烯的高強度也激發(fā)了人們將之應用于建筑領域的興趣。
建筑行業(yè)的碳排放問題由來已久;生產混凝土所排放的二氧化碳占全球二氧化碳排放量的8%。利用石墨烯強化混凝土,能夠減少建筑中的混凝土用量,從而降低碳排放。
但事實證明,石墨烯的高導熱率(華為近期推出的部分智能手機就應用了這一性能)同樣可圈可點。
還記得幾年前意大利熱那亞發(fā)生的公路橋坍塌事故嗎?重新鋪設的瀝青橋面中就含有意大利初創(chuàng)公司Directa Plus研制的石墨烯粉末。石墨烯成分的導熱性可以有效降低路面溫度,使瀝青不易在低溫環(huán)境下產生冷點從而導致硬化和開裂。
Directa Plus聯(lián)合創(chuàng)始人及首席執(zhí)行官朱利奧·塞薩里奧聲稱:“這種添加劑最出色的性能在于它能夠使路面的平均使用壽命從目前的六七年提升至18至21年?!钡獶irecta Plus公司研制的石墨烯微片的應用遠不止于此。
除了塞薩里奧外,Directa Plus還有幾位來自美國的聯(lián)合創(chuàng)始人(后來將持有的股份賣給了醫(yī)生起家的億萬富翁投資人黃馨祥)。他們都曾經是Union Carbide公司元老。1984年博帕爾事件(Union Carbide公司在印度博帕爾市的農藥廠出現(xiàn)化學氣體泄漏,50多萬人因此而喪命)后不久,意大利人塞薩里奧加入了這家美國化工巨頭(現(xiàn)為陶氏化學下屬公司)。
這場悲劇的不幸后果促使塞薩里奧開始關注環(huán)境和可持續(xù)性,這一點也在Directa Plus的產品中得到了體現(xiàn)。
首先,不同于金屬催化外延生長的化學制備方法,Directa Plus采用的是高溫高壓條件下從石墨顆粒中剝離石墨烯的物理方法。塞薩里奧表示,使用這種方法可以更方便地生產出適合貼身穿著的石墨烯面料服裝和口罩(采用Directa Plus石墨烯材料的服裝和口罩均已上市銷售),成本也更低。
除此之外,Directa Plus還一直在與俄羅斯盧克石油公司和奧地利OMV公司合作,解決因為羅馬尼亞原油泄漏而受到污染的土壤和水的凈化問題。由于水能夠通過石墨烯蒸發(fā),而大多數(shù)其他液體不能,將Directa Plus的石墨烯粉末應用于圍油欄可以吸附油污,清潔周圍水質。吸附油污達到飽和狀態(tài)后,能夠作擠壓處理再重復使用。
塞薩里奧在談到使用石墨烯凈化的初步成果時說:“我們清理了400噸原油,并送到煉油廠回收?!?/p>
更環(huán)保的石墨烯包裝
考慮到環(huán)境效益,還可以將石墨烯用作柔性阻隔包裝材料。
本月,英國一家名為Toraphene的初創(chuàng)公司推出了一款生物聚合物,該公司表示,這是首款可完全生物降解、可堆肥、可商業(yè)化生產的生物聚合物,能夠替代塑料包裝。將石墨烯與植物天然高分子聚合物復合在一起的Toraphene材料將首先作為購物袋材質投入應用。
2011年,挪威科技大學(Norwegian University of Science and Technology)的研究人員成立了Toraphene公司。但用作液體包裝材料才是石墨烯包裝材料的真正突破。
首席執(zhí)行官高特·朱利烏森表示,四年前,消費品行業(yè)巨頭聯(lián)合利華(Unilever)曾經與Toraphene接洽,尋找更優(yōu)質的小袋洗發(fā)水包裝(聯(lián)合利華方面證實兩家公司曾經有過洽談)。為了防止液體滲出,目前小袋洗發(fā)水采用的是多層塑料和一層氧化鋁復合的鋁塑包裝袋形式。Toraphene方面表示,Toraphene材料具有液體包裝所需的強度和防水性,但因為材料成分只含有機物和碳,所以更易于回收。
總之,兩家公司的數(shù)輪洽談最后以失敗告終:朱利烏森表示,經過兩年的合同談判,卡夫亨氏(Kraft Heinz)的敵意收購促使聯(lián)合利華不得不大幅削減成本以提高股息,研發(fā)遭受重創(chuàng)。隨著Toraphene方面的洽談聯(lián)系人被解雇,雙方未達成任何交易,為了將這種阻隔性包裝推向市場,這家初創(chuàng)公司將目光投向了剛剛完成的一輪眾籌(而且獲得了大量超額認購)。
朱利烏森稱:“我們制作阻隔性包裝需要的這類石墨烯目前的散裝價格約為每公斤200美元?!盜DTechEx的柯林斯認為這個價格偏高,他表示,目前一些公司的石墨烯售價低于每公斤10美元。但Toraphene的石墨烯原料源自開采的石墨,若使用低成本合成的石墨烯,生產出來的包裝材料質量達不到要求。
朱利烏森說:“因為我們用到的石墨烯量非常少(石墨烯在包裝原材料中所占比例不到0.2%),所以我們生產的石墨烯包裝具有很好的市場前景。加入石墨烯可能會增加10%左右的成本,但包裝的牢固性提升了20%以上。我們可以造福社會?!?/p>
下一個應用領域:紙質咖啡杯。目前的紙質咖啡杯使用塑料襯里來防止?jié)B漏,很難回收利用。Toraphene已經申請專利將Toraphene材料用作咖啡杯襯里,目前正在爭取獲得美國和歐洲的食品標準監(jiān)管機構的批準。
柯林斯認為,石墨烯在這類領域才能夠真正大獲成功。(據(jù)IDTechEx估算,到2031年,各種石墨烯材料的市場價值將從目前的不到1億美元上漲到7億美元。)確實,因為使用了石墨烯材料,耳機、網(wǎng)球拍、鞋子等許多消費品都實現(xiàn)了增值銷售,但他也表示:“只有銷售了成千上百噸的材料才算是成功?!?/p>
柯林斯說:“以汽車公司為例,它們不會花錢購買耐磨襯墊,因為石墨烯會拉高營銷成本。這就是現(xiàn)實。這種產品生命周期經濟學有意義嗎?而這就是那個轉折點的主旨所在?!?/p>
高歌猛進
我們終于談到了石墨烯領域當前最受關注的公司之一:Skeleton Technologies。
這家有著愛沙尼亞和德國背景的公司與歐洲幾家汽車巨頭簽訂了合同,為后者生產用于存儲能量的石墨烯電池(暫時未公布合作品牌)。
把普通的石墨烯一層層堆疊起來會發(fā)生聚集并最終變回石墨。為了解決這一難題,Skeleton開發(fā)了一種專利方法來制造彎曲的石墨烯材料,并將這種材料用于超級電容器。
這款石墨烯增強型電池可以在數(shù)秒內充滿電,一百萬次充放電循環(huán)后都不會退化,并且不需要鋰、鈷等稀缺材料。目前,這些超級電容器已經在挖掘機、醫(yī)療設備和運輸工具中得到應用:在德國曼海姆、海德堡和路德維希港等城市,超級電容器被用于回收有軌電車的制動能量,再將回收的能量用來加速。
Skeleton的首席執(zhí)行官塔維·馬迪伯克說:“在所有類型的電池解決方案中,超級電容器成本最低、體積最小。”然而,與傳統(tǒng)的鋰電池相比,這些超級電容器儲存的能量更少,因此,石墨烯超級電容器很可能會與其他技術共存并相互補充。
馬迪伯克稱,彎曲的石墨烯最大的好處是能夠處理導致標準鋰電池過熱和隨著時間的推移而退化的峰值負載;兩者相結合可以讓電池組體積縮小30%,使用壽命延長一倍。他還談到,隨著相對不可預測的可再生能源影響力增強,Skeleton的超級電容器在維持電網(wǎng)穩(wěn)定方面潛力巨大。
早在2009年石墨烯材料剛剛興起之際,Skeleton就已經開始開發(fā)石墨烯技術,但直到幾年前才開始將其超級電容器商業(yè)化。由于積壓的合同已經超過1.5億歐元(1.82億美元),Skeleton在10月的一輪融資中籌集了4100萬歐元來擴大規(guī)模,并為推出“超級電池”做準備:馬迪伯克認為這是一個價值600億歐元的潛在市場。
作電子商務出身的馬迪伯克表示:“如果2009年的時候知道需要經歷如此漫長的歷程,或許我們未必就會創(chuàng)辦這家公司。石墨烯的發(fā)展和走向市場都需要有足夠的耐心?!保ㄘ敻恢形木W(wǎng))
譯者:唐塵
取一段膠帶貼在鉛筆芯上,撕下膠帶,上面或許還粘著一層薄薄的石墨片。對折膠帶,再撕開,把粘著的石墨薄片分離開來。重復10到20次。如果你的技術夠好,那么恭喜你,你得到了目前世上最薄、幾乎也是最堅硬的材料。
用膠帶粘出石墨烯確有其事:2004年,來自英國曼徹斯特大學(University of Manchester)的安德烈·海姆和康斯坦丁·諾沃肖洛夫首次成功分離出了只有一個原子厚度的二維碳材料:石墨烯。這兩位物理學家也因此而獲得了2010年的諾貝爾物理學獎。
石墨烯具有許多得天獨厚的性質,正如那些加入石墨烯材料的新興產品所宣稱的那樣:耳機的音質更棒、智能手機的散熱性能更好、路面的強度更高,洗發(fā)水的包裝也變得更加環(huán)保。
石墨烯不僅是世界上最薄、強韌度第二(一維碳材料carbyne強度比石墨烯更高)的材料,而且輕若無物、幾乎完全透明。經過不同的處理方式,無論是彈性還是抗斷裂能力方面,石墨烯均表現(xiàn)優(yōu)異。除此之外,石墨烯還是數(shù)一數(shù)二的導電導熱材料,在處理液體時能夠形成可調型過濾器甚至是完全阻隔的屏障。而且,正如海姆和諾沃肖洛夫示范的那樣,石墨烯的制備工藝非常簡單。
石墨烯材料的優(yōu)異性能,再加上諾貝爾獎得主的精彩故事加持,十多年前關于石墨烯的宣傳可謂是鋪天蓋地。但需要做的工作還有很多,比如找出石墨烯的最佳制備方法、石墨烯的商業(yè)化應用、逐步構建新市場等等。于是,石墨烯概念炒作慢慢歸于沉寂。
然而,現(xiàn)在我們似乎真的要迎來屬于石墨烯的時代。
石墨烯“發(fā)聲”
加拿大初創(chuàng)公司Ora研發(fā)出了首款石墨烯耳機GQ。洛杉磯愛樂樂團(Los Angeles Philharmonic)的音樂總監(jiān)古斯塔夫·杜達梅爾發(fā)表聲明公開支持這款耳機,他熱情洋溢地說:“耳機里傳來的音樂音質如同站在交響樂團指揮臺上聽到的那般絲絲入扣?!?
石墨烯強度高、質量輕,阻尼性能優(yōu)越:只要切斷通過石墨烯的電流,石墨烯就會隨即停止振動。利用這些優(yōu)點,Ora研發(fā)出了用于耳機和揚聲器的石墨烯材質的振膜。就連諾沃肖洛夫本人也稱贊該公司確保了“石墨烯正式走出實驗室,進軍音頻領域。”
ORA的聯(lián)合創(chuàng)始人阿里·平卡斯稱:“近二十年來,從理論上來講,石墨烯的性質決定了這是一款制作揚聲器振膜‘圣杯’一樣的材料。”他解釋說,通常情況下,揚聲器設計師必須在剛度、輕巧性或阻尼方面降低要求。
平卡斯稱,公司將與知名筆記本電腦和智能手機品牌合作,為它們的設備制造體積更小、更響亮的揚聲器,并于2022年推出部分設計。但因為簽署了保密協(xié)議,他并未公開合作的品牌。
先進技術市場調研公司IDTechEx的首席分析師理查德·柯林斯表示:“橫空出世的石墨烯是一種可以改變世界的神奇材料。老實說,如果你跟與石墨烯相關的人士交談,大多數(shù)人仍然認為石墨烯會改變一切。”
“事實上,十年間也有很多公司在嘗試應用石墨烯。許多終端用戶在探索這種材料。從實際角度看,只有到現(xiàn)在和未來幾年我們才慢慢接近石墨烯應用的轉折點?!?/p>
石墨烯“上路”
從音頻到瀝青路面:石墨烯的高強度也激發(fā)了人們將之應用于建筑領域的興趣。
建筑行業(yè)的碳排放問題由來已久;生產混凝土所排放的二氧化碳占全球二氧化碳排放量的8%。利用石墨烯強化混凝土,能夠減少建筑中的混凝土用量,從而降低碳排放。
但事實證明,石墨烯的高導熱率(華為近期推出的部分智能手機就應用了這一性能)同樣可圈可點。
還記得幾年前意大利熱那亞發(fā)生的公路橋坍塌事故嗎?重新鋪設的瀝青橋面中就含有意大利初創(chuàng)公司Directa Plus研制的石墨烯粉末。石墨烯成分的導熱性可以有效降低路面溫度,使瀝青不易在低溫環(huán)境下產生冷點從而導致硬化和開裂。
Directa Plus聯(lián)合創(chuàng)始人及首席執(zhí)行官朱利奧·塞薩里奧聲稱:“這種添加劑最出色的性能在于它能夠使路面的平均使用壽命從目前的六七年提升至18至21年?!钡獶irecta Plus公司研制的石墨烯微片的應用遠不止于此。
除了塞薩里奧外,Directa Plus還有幾位來自美國的聯(lián)合創(chuàng)始人(后來將持有的股份賣給了醫(yī)生起家的億萬富翁投資人黃馨祥)。他們都曾經是Union Carbide公司元老。1984年博帕爾事件(Union Carbide公司在印度博帕爾市的農藥廠出現(xiàn)化學氣體泄漏,50多萬人因此而喪命)后不久,意大利人塞薩里奧加入了這家美國化工巨頭(現(xiàn)為陶氏化學下屬公司)。
這場悲劇的不幸后果促使塞薩里奧開始關注環(huán)境和可持續(xù)性,這一點也在Directa Plus的產品中得到了體現(xiàn)。
首先,不同于金屬催化外延生長的化學制備方法,Directa Plus采用的是高溫高壓條件下從石墨顆粒中剝離石墨烯的物理方法。塞薩里奧表示,使用這種方法可以更方便地生產出適合貼身穿著的石墨烯面料服裝和口罩(采用Directa Plus石墨烯材料的服裝和口罩均已上市銷售),成本也更低。
除此之外,Directa Plus還一直在與俄羅斯盧克石油公司和奧地利OMV公司合作,解決因為羅馬尼亞原油泄漏而受到污染的土壤和水的凈化問題。由于水能夠通過石墨烯蒸發(fā),而大多數(shù)其他液體不能,將Directa Plus的石墨烯粉末應用于圍油欄可以吸附油污,清潔周圍水質。吸附油污達到飽和狀態(tài)后,能夠作擠壓處理再重復使用。
塞薩里奧在談到使用石墨烯凈化的初步成果時說:“我們清理了400噸原油,并送到煉油廠回收?!?/p>
更環(huán)保的石墨烯包裝
考慮到環(huán)境效益,還可以將石墨烯用作柔性阻隔包裝材料。
本月,英國一家名為Toraphene的初創(chuàng)公司推出了一款生物聚合物,該公司表示,這是首款可完全生物降解、可堆肥、可商業(yè)化生產的生物聚合物,能夠替代塑料包裝。將石墨烯與植物天然高分子聚合物復合在一起的Toraphene材料將首先作為購物袋材質投入應用。
2011年,挪威科技大學(Norwegian University of Science and Technology)的研究人員成立了Toraphene公司。但用作液體包裝材料才是石墨烯包裝材料的真正突破。
首席執(zhí)行官高特·朱利烏森表示,四年前,消費品行業(yè)巨頭聯(lián)合利華(Unilever)曾經與Toraphene接洽,尋找更優(yōu)質的小袋洗發(fā)水包裝(聯(lián)合利華方面證實兩家公司曾經有過洽談)。為了防止液體滲出,目前小袋洗發(fā)水采用的是多層塑料和一層氧化鋁復合的鋁塑包裝袋形式。Toraphene方面表示,Toraphene材料具有液體包裝所需的強度和防水性,但因為材料成分只含有機物和碳,所以更易于回收。
總之,兩家公司的數(shù)輪洽談最后以失敗告終:朱利烏森表示,經過兩年的合同談判,卡夫亨氏(Kraft Heinz)的敵意收購促使聯(lián)合利華不得不大幅削減成本以提高股息,研發(fā)遭受重創(chuàng)。隨著Toraphene方面的洽談聯(lián)系人被解雇,雙方未達成任何交易,為了將這種阻隔性包裝推向市場,這家初創(chuàng)公司將目光投向了剛剛完成的一輪眾籌(而且獲得了大量超額認購)。
朱利烏森稱:“我們制作阻隔性包裝需要的這類石墨烯目前的散裝價格約為每公斤200美元。”IDTechEx的柯林斯認為這個價格偏高,他表示,目前一些公司的石墨烯售價低于每公斤10美元。但Toraphene的石墨烯原料源自開采的石墨,若使用低成本合成的石墨烯,生產出來的包裝材料質量達不到要求。
朱利烏森說:“因為我們用到的石墨烯量非常少(石墨烯在包裝原材料中所占比例不到0.2%),所以我們生產的石墨烯包裝具有很好的市場前景。加入石墨烯可能會增加10%左右的成本,但包裝的牢固性提升了20%以上。我們可以造福社會?!?/p>
下一個應用領域:紙質咖啡杯。目前的紙質咖啡杯使用塑料襯里來防止?jié)B漏,很難回收利用。Toraphene已經申請專利將Toraphene材料用作咖啡杯襯里,目前正在爭取獲得美國和歐洲的食品標準監(jiān)管機構的批準。
柯林斯認為,石墨烯在這類領域才能夠真正大獲成功。(據(jù)IDTechEx估算,到2031年,各種石墨烯材料的市場價值將從目前的不到1億美元上漲到7億美元。)確實,因為使用了石墨烯材料,耳機、網(wǎng)球拍、鞋子等許多消費品都實現(xiàn)了增值銷售,但他也表示:“只有銷售了成千上百噸的材料才算是成功?!?/p>
柯林斯說:“以汽車公司為例,它們不會花錢購買耐磨襯墊,因為石墨烯會拉高營銷成本。這就是現(xiàn)實。這種產品生命周期經濟學有意義嗎?而這就是那個轉折點的主旨所在。”
高歌猛進
我們終于談到了石墨烯領域當前最受關注的公司之一:Skeleton Technologies。
這家有著愛沙尼亞和德國背景的公司與歐洲幾家汽車巨頭簽訂了合同,為后者生產用于存儲能量的石墨烯電池(暫時未公布合作品牌)。
把普通的石墨烯一層層堆疊起來會發(fā)生聚集并最終變回石墨。為了解決這一難題,Skeleton開發(fā)了一種專利方法來制造彎曲的石墨烯材料,并將這種材料用于超級電容器。
這款石墨烯增強型電池可以在數(shù)秒內充滿電,一百萬次充放電循環(huán)后都不會退化,并且不需要鋰、鈷等稀缺材料。目前,這些超級電容器已經在挖掘機、醫(yī)療設備和運輸工具中得到應用:在德國曼海姆、海德堡和路德維希港等城市,超級電容器被用于回收有軌電車的制動能量,再將回收的能量用來加速。
Skeleton的首席執(zhí)行官塔維·馬迪伯克說:“在所有類型的電池解決方案中,超級電容器成本最低、體積最小?!比欢?,與傳統(tǒng)的鋰電池相比,這些超級電容器儲存的能量更少,因此,石墨烯超級電容器很可能會與其他技術共存并相互補充。
馬迪伯克稱,彎曲的石墨烯最大的好處是能夠處理導致標準鋰電池過熱和隨著時間的推移而退化的峰值負載;兩者相結合可以讓電池組體積縮小30%,使用壽命延長一倍。他還談到,隨著相對不可預測的可再生能源影響力增強,Skeleton的超級電容器在維持電網(wǎng)穩(wěn)定方面潛力巨大。
早在2009年石墨烯材料剛剛興起之際,Skeleton就已經開始開發(fā)石墨烯技術,但直到幾年前才開始將其超級電容器商業(yè)化。由于積壓的合同已經超過1.5億歐元(1.82億美元),Skeleton在10月的一輪融資中籌集了4100萬歐元來擴大規(guī)模,并為推出“超級電池”做準備:馬迪伯克認為這是一個價值600億歐元的潛在市場。
作電子商務出身的馬迪伯克表示:“如果2009年的時候知道需要經歷如此漫長的歷程,或許我們未必就會創(chuàng)辦這家公司。石墨烯的發(fā)展和走向市場都需要有足夠的耐心?!保ㄘ敻恢形木W(wǎng))
譯者:唐塵
Take a piece of adhesive tape and apply it to the “l(fā)ead” of a pencil. Pull the tape away, and it may still have some thin flakes of graphite attached. Fold the tape in half and unfold it, to split the flakes. Do this 10 or 20 times and, if your technique is good, then congratulations—you’ve just made the thinnest known material, and almost the strongest.
The tape trick is literally how Andre Geim and Konstantin Novoselov managed to first isolate graphene—an atom-thick and therefore two-dimensional layer of carbon—at the U.K.’s University of Manchester in 2004. Six years later, the physicists won the Nobel Prize for their efforts, and for good reason.
Graphene’s properties are extraordinary, as shown in emerging products that incorporate the material: better-sounding headphones, cooler smartphones, tougher roads, and more environmentally friendly shampoo packaging.
Not only is graphene the world’s thinnest and second-strongest material—a one-dimensional form of carbon called carbyne has overtaken it there—but it’s incredibly light and transparent. It’s also either very flexible or very stiff, depending on how it’s treated. It’s among the best thermal conductors and the fastest electrical conductors, and it’s also great at letting water through while blocking anything else, making it an excellent filter and barrier. And, as Geim and Novoselov demonstrated, graphene can be quite easy to make.
These properties, plus the Nobel laureates’ remarkable story, led to a ton of graphene hype around a decade ago. But a lot of work still needed to be done, such as figuring out how best to make and wrangle graphene; finding applications where it makes economic sense; and slowly constructing new markets. So the hype died down.
Now, however, the wonder substance’s time may be arriving.
Listen up
“I can hear every musical detail with a level of clarity I’ve only ever experienced from the podium in front of an orchestra,” enthused Gustavo Dudamel, the music director of the Los Angeles Philharmonic, as he endorsed the world’s first graphene-based headphones—a set called GQ, made by a Canadian startup called Ora—in a statement.
Harnessing graphene’s stiffness, lightness, and damping properties—its ability to stop moving as soon as an electrical current stops passing through it—Ora is using graphene oxide to make membranes for headphones and loudspeakers. Novoselov himself has hailed the firm for ensuring that “graphene is officially out of the lab and into the audio world.”
“For almost two decades now, graphene’s theorized properties have been viewed as the ‘holy grail’ diaphragm material for loudspeakers,” says Ora cofounder Ari Pinkas, explaining that speaker designers usually have to compromise on either stiffness, lightness, or damping.
Pinkas says his company is working with major laptop and smartphone brands on making smaller and louder speakers for their devices, with some designs set to launch in 2022. However, citing nondisclosure agreements, he isn’t naming any names.
“When graphene burst onto the scene, it was a wonder material that would change the world,” says Richard Collins, a principal analyst at the advanced-technology market research firm IDTechEx. “To be honest, if you talk to a lot of graphene people, they still think it will change everything.
“What’s happened is, over that 10-year period, you’ve had a lot of companies trial it. You’ve had a lot of end users explore it. Realistically, only now and over the next couple of years we’re reaching that inflection point.”
Hit the road
From audio to asphalt: Graphene’s strength is stirring up interest in the construction industry.
The industry has a long-standing problem with emissions; as much as 8% of the world’s CO2 emissions come from concrete production. The addition of graphene into the mix could help cut those emissions, because it would allow for stronger concrete, which means being able to use less concrete.
But graphene’s ability to quickly and efficiently conduct heat (a property that has led to its use in some recent Huawei smartphones) is also proving useful.
Remember the deadly highway bridge collapse that occurred a couple of years ago in Genoa, Italy? The asphalt on the bridge’s replacement contains graphene powder made by an Italian startup called Directa Plus. This helps distribute heat through the road surface, so in freezing temperatures there’s less likelihood of cold spots generating cracks that eventually become potholes.
“The most impressive property is that this additive is able to triple the life of the road from six to seven years to 18 to 21 years,” claims Giulio Cesareo, Directa Plus cofounder and CEO. But that’s far from the only use for the company’s graphene nanoplatelets.
Cesareo and his American cofounders—who have since sold their shares to the billionaire surgeon turned investor Patrick Soon-Shiong—are veterans of Union Carbide. The Italian joined the U.S. chemical giant (now owned by Dow) just after the 1984 Bhopal disaster, in which a Union Carbide pesticide plant in India leaked gas and poisoned more than half a million people.
The aftermath of that tragedy fueled Cesareo’s interest in the environment and sustainability, which is now playing out in Directa Plus’s work.
For one thing, Directa Plus’s method of producing graphene is based on physics rather than chemistry—instead of using chemicals to grow the substance on metal, it uses extreme heat and pressure to exfoliate graphene from graphite particles. This, says Cesareo, makes it easier and cheaper to produce graphene-based fabrics that can be safely worn on the skin, in clothing and face masks (both of which are on the market, using Directa Plus’s graphene.)
The company has also been working with Russia’s Lukoil and Austria’s OMV on decontaminating soil and water that has been polluted through oil spills in Romania. Because graphene is able to block most fluids while letting only water through, Directa Plus’s powder is being used in barriers that absorb spilled oil, cleaning up the surround. When saturated, they can effectively be squeezed out and used again.
“We removed 400 tons of crude oil that was sent back to the refinery,” says Cesareo of early deployments.
Greener packaging
Graphene’s utility as a flexible barrier is naturally very handy in the world of packaging—again, with environmental benefits in mind.
This month, a U.K.-based startup called Toraphene unveiled a biopolymer that it says provides the first fully biodegradable, compostable, and commercially viable alternative to plastic packaging. The eponymous material, which combines graphene with natural polymers from plants, is being deployed first in shopping bags.
But the real breakthrough—the one which launched Toraphene’s journey in 2011, when its founders were researchers at the Norwegian University of Science and Technology—will be in packaging for liquids.
CEO Gaute Juliussen says the consumer goods giant Unilever approached Toraphene four years ago, asking for a better shampoo sachet (Unilever confirms the companies had discussions.) Current sachets use a few layers of plastic for strength and one of aluminum oxide, to provide a barrier against the liquid oozing out. Toraphene says its material provides the strength and impermeability that is needed, but in a form that can be easily recycled as it is just organics and carbon.
In any case, the Unilever discussions fell through: After two years of contract negotiations, Juliussen says, Kraft Heinz’s attempted hostile takeover prompted big cost-cutting measures in order to boost dividends, and R&D was hit hard. With Toraphene’s contacts now having been let go, there was no deal, and the startup turned to a just completed (and heavily oversubscribed) round of crowdfunding to get its barrier packaging to market.
“The type of graphene we are looking at for packaging will currently cost in bulk around $200 per kilo,” says Juliussen. That’s high—IDTechEx’s Collins says some companies are selling graphene for under $10 per kilogram these days. But Toraphene’s graphene comes from quarried graphite rather than being synthesized at low cost, an approach which can create an inferior product.
“Because we use so little of it [less than 0.2% of the packaging is graphene] we are able to make economic packaging with it,” says Juliussen. “It adds maybe 10% or so to the cost, but then we add strength to the packaging of more than 20%. Net-net, we are able to confer a benefit.”
Next stop: paper coffee cups, which currently use a plastic lining for impermeability that also makes them difficult to recycle. Toraphene has filed a patent for the use of its material as a lining, and is currently working on approval from U.S. and European food-standards regulators.
According to Collins, it’s this sort of area where graphene could really find success. (IDTechEx reckons the market for various kinds of graphene material will be worth $700 million by 2031, up from under $100 million today.) Yes, there are consumer products that are upsold based on their use of graphene—headphones, tennis rackets, shoes—but “success is having hundreds to thousands of tons of your material being sold,” he says.
“The reality is, if you talk to an automotive company, they’re not going to spend money on a wear-resistant liner, because graphene adds marketing,” Collins says. “It’s the economics over the lifetime of the product—does it make sense? That’s the thrust of that inflection point.”
Charging forward
Which brings us finally to one of the most talked about companies currently operating in the graphene space: Skeleton Technologies.
The Estonian-German firm has contracts with some of Europe’s biggest automotive names—though it’s reluctant to publicize them for now—and not for liner material, but for energy storage in graphene-based batteries.
If you stack normal, flat graphene layers, they clump together and you end up with graphite again. So Skeleton developed a proprietary method of making curved graphene, which overcomes this problem. It uses this curved graphene in ultracapacitors.
That means batteries that can be charged in seconds, a million times over, with no need for scarce materials such as lithium and cobalt. These ultracapacitors are already being used in excavators, in medical equipment, and in transport: In the German cities of Mannheim, Heidelberg, and Ludwigshafen, they are recuperating trams’ braking energy and reusing it for acceleration.
“It’s cheaper and smaller than any type of battery solution,” says Skeleton CEO Taavi Madiberk. However, because these ultracapacitors store less energy than traditional lithium-ion batteries, it’s likely that graphene ultracapacitors will coexist with and complement other technologies.
According to Madiberk, curved graphene’s biggest benefit is in handling the peak loads that cause standard lithium-ion batteries to overheat and to degrade over time; combining the two allows for battery packs that are 30% smaller and twice as long-lasting. He also talks up the potential of Skeleton’s ultracapacitors in maintaining electrical-grid stability as relatively unpredictable renewables become more predominant.
Skeleton has been developing its technology since the early days of graphene, in 2009, but it only started commercializing its ultracapacitors a couple of years ago. With a contract backlog that already exceeds €150 million ($182 million), it raised €41 million in an October investment round to scale up and prepare for its launch of “super-batteries,” for which Madiberk sees a potential €60 billion market.
“Maybe in 2009, if I’d known how long it takes, I’m not sure we would have started the company,” says Madiberk, whose background is in e-commerce. “In terms of graphene and getting to the market, it’s patience, patience, patience.”