你是否曾經(jīng)在某天醒來時(shí)想:“我年輕的時(shí)候,只睡4個(gè)小時(shí)就能夠補(bǔ)充好體力,但現(xiàn)在我似乎需要10個(gè)小時(shí)才行?”或者你是否曾經(jīng)在走出健身房后,“感到”膝蓋不舒服?
幾乎每個(gè)人都會(huì)經(jīng)歷這類衰老的跡象。但有些人似乎無視自己的年齡。已故的美國最高法院大法官露絲·巴德·金斯伯格一直擔(dān)任大法官,直到87歲去世?!坝姹捍筚悺保℅reat British Bake Off)的評委瑪麗·貝瑞現(xiàn)年80多歲,她仍然在激勵(lì)世界各地的人去烘焙和享受生活。演員保羅·路德在2021年被《人物》雜志(People)評為“最性感男人”(Sexiest Man Alive),當(dāng)時(shí)他52歲,但看起來仍然像30多歲。那么年齡只是一個(gè)數(shù)字嗎?
研究人員將注意力集中在了解與年齡有關(guān)的疾病的原因和風(fēng)險(xiǎn)因素上,例如阿爾茨海默病、癡呆癥、骨質(zhì)疏松癥和癌癥等。但許多人忽視了所有這些疾病的主要風(fēng)險(xiǎn)因素:衰老本身。與吸煙或缺乏鍛煉等個(gè)人風(fēng)險(xiǎn)因素相比,你的實(shí)際年齡可以更好地預(yù)測疾病在何時(shí)發(fā)作。事實(shí)上,衰老會(huì)使多種慢性病的風(fēng)險(xiǎn)增加多達(dá)一千倍。
然而,沒有兩個(gè)人衰老的速度是一樣的。雖然年齡是幾種慢性疾病的主要風(fēng)險(xiǎn)因素,但它并不是一個(gè)可靠的指標(biāo),無法顯示你的身體會(huì)衰老得有多快,或者你是否更容易受到與年齡有關(guān)的疾病的影響。這是因?yàn)槟愕膶?shí)際年齡(或確切的真實(shí)歲數(shù))和你的生理年齡(你的生物學(xué)狀態(tài)或?qū)嶋H生存能力)之間存在差異。
我是一位對重新定義“年齡”很感興趣的科學(xué)家。我的實(shí)驗(yàn)室致力于測量生理年齡,而不是以實(shí)際年齡為基準(zhǔn)。與實(shí)際年齡相比,生理年齡能夠更準(zhǔn)確地衡量健康壽命,也就是健康狀況良好的壽命,而且這與皺紋和白發(fā)沒有直接關(guān)系。相對于他們的實(shí)際年齡,快速老化者的功能退化速度更快。
我的祖母活到了83歲,但一直臥床不起,在她生命的最后幾年里都不記得我是誰。另一方面,我的祖父也活到了83歲,但他卻精神矍鑠,身板硬朗,甚至還可以陪我做作業(yè),直到他去世——他是一位身體健康的老年人。
隨著世界老齡化人口的空前增長,我認(rèn)為,找出測量生理年齡的方法以及如何維持現(xiàn)狀或延緩衰老進(jìn)程,不僅對個(gè)人健康至關(guān)重要,對整個(gè)社會(huì)的社會(huì)、政治和經(jīng)濟(jì)健康也至關(guān)重要。及早發(fā)現(xiàn)快速衰老者就有機(jī)會(huì)延緩、改變甚至逆轉(zhuǎn)衰老過程。
遺傳與生理年齡
生物衰老是多方面的。它源于復(fù)雜的遺傳特征組合,并受到微生物組組成、環(huán)境、生活方式、壓力、飲食和運(yùn)動(dòng)等因素的影響。
遺傳曾經(jīng)被認(rèn)為對衰老或壽命沒有影響。然而,在20世紀(jì)90年代初,研究人員報(bào)告了第一批確定能夠延長小蛔蟲壽命的基因的研究。從那時(shí)起,多項(xiàng)觀察結(jié)果支持遺傳對衰老的影響。
比如,父母長壽,甚至兄弟姐妹長壽,這樣的兒童往往壽命更長。研究人員還確定了多種影響壽命的基因,這些基因還可以在復(fù)原力和抵御壓力方面發(fā)揮作用。這些基因包括修復(fù)DNA、保護(hù)細(xì)胞免受自由基侵害和調(diào)節(jié)脂肪水平的基因。
然而,從對同卵雙胞胎的研究中能夠清楚地看出,基因并不是影響衰老的唯一因素。同卵雙胞胎擁有相同的基因,但壽命并不完全相同。事實(shí)上,基因可能只占所有影響生理年齡因素的20%到30%。這表明,其他參數(shù)也會(huì)對生物衰老產(chǎn)生極大的影響。
環(huán)境和生活方式的影響
研究人員發(fā)現(xiàn),環(huán)境和生活方式因素對生理年齡也有很大的影響,包括社會(huì)聯(lián)系、睡眠習(xí)慣、飲水量、運(yùn)動(dòng)和飲食。
社會(huì)聯(lián)系對人一生的幸福至關(guān)重要。但隨著時(shí)間的推移,由于失去親人和朋友、抑郁癥、慢性疾病或其他因素,社會(huì)聯(lián)系可能難以維持。一些研究報(bào)告稱,社交隔離與壓力、發(fā)病率和死亡率的上升有密切關(guān)系。
同樣,飲食和運(yùn)動(dòng)對生理年齡也有很大影響。藍(lán)色地帶是指世界上壽命超過100歲的人口比例較高的地區(qū),他們將長壽歸因于飲食、運(yùn)動(dòng)和社會(huì)聯(lián)系。以植物為基礎(chǔ)的膳食和每天穿插一些時(shí)間進(jìn)行鍛煉是眾所周知的健康長壽“秘訣”。雖然關(guān)于間歇性禁食和限時(shí)進(jìn)食等飲食干預(yù)對長壽影響的最新研究尚未經(jīng)過嚴(yán)格測試,但它們確實(shí)可以帶來多種益處,包括能夠更好地調(diào)節(jié)葡萄糖和胰島素。
雖然遺傳難以控制,但可以通過改變飲食和運(yùn)動(dòng)習(xí)慣來延緩衰老。
如何測量生理年齡
目前,還沒有有效的測試能夠在生命早期預(yù)測一個(gè)人的健康軌跡,以便隨著年齡的增長進(jìn)行干預(yù)和改善生活質(zhì)量。科學(xué)家們對確定一種足夠敏感和特異的分子很感興趣,這種分子可以作為生理年齡的獨(dú)特指紋。
在討論生理年齡時(shí),考慮個(gè)人的健康和復(fù)原力而不是僅僅關(guān)注疾病狀態(tài)是很重要的。復(fù)原力是指適應(yīng)變化和從健康挑戰(zhàn)中恢復(fù)的狀態(tài),通常能夠更好地預(yù)測功能健康。分子衰老指紋可以提供一種工具,幫助確定那些復(fù)原力較差、需要積極監(jiān)測和早期干預(yù)的人,以保護(hù)他們的健康,并幫助減少性別、種族和民族健康差異。
有幾種前景很好的分子標(biāo)記能夠作為生理年齡指紋。
這些標(biāo)記之一是表觀遺傳時(shí)鐘。表觀遺傳修飾作用于DNA,用來調(diào)節(jié)基因功能,是化學(xué)修飾的一種形式。一些科學(xué)家發(fā)現(xiàn),DNA甲基化是表觀遺傳標(biāo)記的重要組成部分,會(huì)隨著年齡的變化而變化,可能作為衰老的標(biāo)記。
然而,值得注意的是,盡管表觀遺傳時(shí)鐘在預(yù)測實(shí)際年齡方面很有價(jià)值,但它們并不等同于生理年齡。此外,目前還不清楚這些表觀遺傳標(biāo)記是如何工作的,以及它們是如何促成衰老的。
另一個(gè)公認(rèn)的生理年齡標(biāo)志是被稱為衰老細(xì)胞或僵尸細(xì)胞的功能失調(diào)細(xì)胞的積累。當(dāng)細(xì)胞經(jīng)歷多種類型的壓力,并受到嚴(yán)重?fù)p傷以至于無法再分裂時(shí),它們就會(huì)衰老,釋放出導(dǎo)致慢性炎癥和疾病的分子。
動(dòng)物研究表明,清除這些細(xì)胞可以延長健康壽命。然而,人類衰老細(xì)胞的定義仍然是未知的,這使得追蹤這些衰老細(xì)胞(生理年齡的一大衡量標(biāo)準(zhǔn))很有挑戰(zhàn)性。
最后,作為正常代謝的副產(chǎn)物,人的身體會(huì)釋放獨(dú)特的代謝物,或稱化學(xué)指紋。這些代謝物在生理調(diào)節(jié)中會(huì)直接發(fā)揮能動(dòng)性,并提供功能健康方面的信息。我的實(shí)驗(yàn)室和其他實(shí)驗(yàn)室正在研究這些化學(xué)物質(zhì)的確切組成,以便找出能夠更好地測量生理年齡的方法。在確定這些代謝物,以及了解它們?nèi)绾斡绊懮砟挲g方面,仍然有大量的工作要做。
長久以來,人們一直在尋找不老泉。這樣的靈丹妙藥是否存在仍然未知。但研究表明,推遲生理年齡可能會(huì)讓人們生活得更健康、更充實(shí)。(財(cái)富中文網(wǎng))
本文作者阿迪提·古爾卡(Aditi Gurkar)是匹茲堡大學(xué)(University of Pittsburgh)的老年醫(yī)學(xué)助理教授。
本文已獲知識(shí)共享(Creative Commons)組織的許可,轉(zhuǎn)載自The Conversation網(wǎng)站。
譯者:中慧言-王芳
你是否曾經(jīng)在某天醒來時(shí)想:“我年輕的時(shí)候,只睡4個(gè)小時(shí)就能夠補(bǔ)充好體力,但現(xiàn)在我似乎需要10個(gè)小時(shí)才行?”或者你是否曾經(jīng)在走出健身房后,“感到”膝蓋不舒服?
幾乎每個(gè)人都會(huì)經(jīng)歷這類衰老的跡象。但有些人似乎無視自己的年齡。已故的美國最高法院大法官露絲·巴德·金斯伯格一直擔(dān)任大法官,直到87歲去世?!坝姹捍筚悺保℅reat British Bake Off)的評委瑪麗·貝瑞現(xiàn)年80多歲,她仍然在激勵(lì)世界各地的人去烘焙和享受生活。演員保羅·路德在2021年被《人物》雜志(People)評為“最性感男人”(Sexiest Man Alive),當(dāng)時(shí)他52歲,但看起來仍然像30多歲。那么年齡只是一個(gè)數(shù)字嗎?
研究人員將注意力集中在了解與年齡有關(guān)的疾病的原因和風(fēng)險(xiǎn)因素上,例如阿爾茨海默病、癡呆癥、骨質(zhì)疏松癥和癌癥等。但許多人忽視了所有這些疾病的主要風(fēng)險(xiǎn)因素:衰老本身。與吸煙或缺乏鍛煉等個(gè)人風(fēng)險(xiǎn)因素相比,你的實(shí)際年齡可以更好地預(yù)測疾病在何時(shí)發(fā)作。事實(shí)上,衰老會(huì)使多種慢性病的風(fēng)險(xiǎn)增加多達(dá)一千倍。
然而,沒有兩個(gè)人衰老的速度是一樣的。雖然年齡是幾種慢性疾病的主要風(fēng)險(xiǎn)因素,但它并不是一個(gè)可靠的指標(biāo),無法顯示你的身體會(huì)衰老得有多快,或者你是否更容易受到與年齡有關(guān)的疾病的影響。這是因?yàn)槟愕膶?shí)際年齡(或確切的真實(shí)歲數(shù))和你的生理年齡(你的生物學(xué)狀態(tài)或?qū)嶋H生存能力)之間存在差異。
我是一位對重新定義“年齡”很感興趣的科學(xué)家。我的實(shí)驗(yàn)室致力于測量生理年齡,而不是以實(shí)際年齡為基準(zhǔn)。與實(shí)際年齡相比,生理年齡能夠更準(zhǔn)確地衡量健康壽命,也就是健康狀況良好的壽命,而且這與皺紋和白發(fā)沒有直接關(guān)系。相對于他們的實(shí)際年齡,快速老化者的功能退化速度更快。
我的祖母活到了83歲,但一直臥床不起,在她生命的最后幾年里都不記得我是誰。另一方面,我的祖父也活到了83歲,但他卻精神矍鑠,身板硬朗,甚至還可以陪我做作業(yè),直到他去世——他是一位身體健康的老年人。
隨著世界老齡化人口的空前增長,我認(rèn)為,找出測量生理年齡的方法以及如何維持現(xiàn)狀或延緩衰老進(jìn)程,不僅對個(gè)人健康至關(guān)重要,對整個(gè)社會(huì)的社會(huì)、政治和經(jīng)濟(jì)健康也至關(guān)重要。及早發(fā)現(xiàn)快速衰老者就有機(jī)會(huì)延緩、改變甚至逆轉(zhuǎn)衰老過程。
遺傳與生理年齡
生物衰老是多方面的。它源于復(fù)雜的遺傳特征組合,并受到微生物組組成、環(huán)境、生活方式、壓力、飲食和運(yùn)動(dòng)等因素的影響。
遺傳曾經(jīng)被認(rèn)為對衰老或壽命沒有影響。然而,在20世紀(jì)90年代初,研究人員報(bào)告了第一批確定能夠延長小蛔蟲壽命的基因的研究。從那時(shí)起,多項(xiàng)觀察結(jié)果支持遺傳對衰老的影響。
比如,父母長壽,甚至兄弟姐妹長壽,這樣的兒童往往壽命更長。研究人員還確定了多種影響壽命的基因,這些基因還可以在復(fù)原力和抵御壓力方面發(fā)揮作用。這些基因包括修復(fù)DNA、保護(hù)細(xì)胞免受自由基侵害和調(diào)節(jié)脂肪水平的基因。
然而,從對同卵雙胞胎的研究中能夠清楚地看出,基因并不是影響衰老的唯一因素。同卵雙胞胎擁有相同的基因,但壽命并不完全相同。事實(shí)上,基因可能只占所有影響生理年齡因素的20%到30%。這表明,其他參數(shù)也會(huì)對生物衰老產(chǎn)生極大的影響。
環(huán)境和生活方式的影響
研究人員發(fā)現(xiàn),環(huán)境和生活方式因素對生理年齡也有很大的影響,包括社會(huì)聯(lián)系、睡眠習(xí)慣、飲水量、運(yùn)動(dòng)和飲食。
社會(huì)聯(lián)系對人一生的幸福至關(guān)重要。但隨著時(shí)間的推移,由于失去親人和朋友、抑郁癥、慢性疾病或其他因素,社會(huì)聯(lián)系可能難以維持。一些研究報(bào)告稱,社交隔離與壓力、發(fā)病率和死亡率的上升有密切關(guān)系。
同樣,飲食和運(yùn)動(dòng)對生理年齡也有很大影響。藍(lán)色地帶是指世界上壽命超過100歲的人口比例較高的地區(qū),他們將長壽歸因于飲食、運(yùn)動(dòng)和社會(huì)聯(lián)系。以植物為基礎(chǔ)的膳食和每天穿插一些時(shí)間進(jìn)行鍛煉是眾所周知的健康長壽“秘訣”。雖然關(guān)于間歇性禁食和限時(shí)進(jìn)食等飲食干預(yù)對長壽影響的最新研究尚未經(jīng)過嚴(yán)格測試,但它們確實(shí)可以帶來多種益處,包括能夠更好地調(diào)節(jié)葡萄糖和胰島素。
雖然遺傳難以控制,但可以通過改變飲食和運(yùn)動(dòng)習(xí)慣來延緩衰老。
如何測量生理年齡
目前,還沒有有效的測試能夠在生命早期預(yù)測一個(gè)人的健康軌跡,以便隨著年齡的增長進(jìn)行干預(yù)和改善生活質(zhì)量。科學(xué)家們對確定一種足夠敏感和特異的分子很感興趣,這種分子可以作為生理年齡的獨(dú)特指紋。
在討論生理年齡時(shí),考慮個(gè)人的健康和復(fù)原力而不是僅僅關(guān)注疾病狀態(tài)是很重要的。復(fù)原力是指適應(yīng)變化和從健康挑戰(zhàn)中恢復(fù)的狀態(tài),通常能夠更好地預(yù)測功能健康。分子衰老指紋可以提供一種工具,幫助確定那些復(fù)原力較差、需要積極監(jiān)測和早期干預(yù)的人,以保護(hù)他們的健康,并幫助減少性別、種族和民族健康差異。
有幾種前景很好的分子標(biāo)記能夠作為生理年齡指紋。
這些標(biāo)記之一是表觀遺傳時(shí)鐘。表觀遺傳修飾作用于DNA,用來調(diào)節(jié)基因功能,是化學(xué)修飾的一種形式。一些科學(xué)家發(fā)現(xiàn),DNA甲基化是表觀遺傳標(biāo)記的重要組成部分,會(huì)隨著年齡的變化而變化,可能作為衰老的標(biāo)記。
然而,值得注意的是,盡管表觀遺傳時(shí)鐘在預(yù)測實(shí)際年齡方面很有價(jià)值,但它們并不等同于生理年齡。此外,目前還不清楚這些表觀遺傳標(biāo)記是如何工作的,以及它們是如何促成衰老的。
另一個(gè)公認(rèn)的生理年齡標(biāo)志是被稱為衰老細(xì)胞或僵尸細(xì)胞的功能失調(diào)細(xì)胞的積累。當(dāng)細(xì)胞經(jīng)歷多種類型的壓力,并受到嚴(yán)重?fù)p傷以至于無法再分裂時(shí),它們就會(huì)衰老,釋放出導(dǎo)致慢性炎癥和疾病的分子。
動(dòng)物研究表明,清除這些細(xì)胞可以延長健康壽命。然而,人類衰老細(xì)胞的定義仍然是未知的,這使得追蹤這些衰老細(xì)胞(生理年齡的一大衡量標(biāo)準(zhǔn))很有挑戰(zhàn)性。
最后,作為正常代謝的副產(chǎn)物,人的身體會(huì)釋放獨(dú)特的代謝物,或稱化學(xué)指紋。這些代謝物在生理調(diào)節(jié)中會(huì)直接發(fā)揮能動(dòng)性,并提供功能健康方面的信息。我的實(shí)驗(yàn)室和其他實(shí)驗(yàn)室正在研究這些化學(xué)物質(zhì)的確切組成,以便找出能夠更好地測量生理年齡的方法。在確定這些代謝物,以及了解它們?nèi)绾斡绊懮砟挲g方面,仍然有大量的工作要做。
長久以來,人們一直在尋找不老泉。這樣的靈丹妙藥是否存在仍然未知。但研究表明,推遲生理年齡可能會(huì)讓人們生活得更健康、更充實(shí)。(財(cái)富中文網(wǎng))
本文作者阿迪提·古爾卡(Aditi Gurkar)是匹茲堡大學(xué)(University of Pittsburgh)的老年醫(yī)學(xué)助理教授。
本文已獲知識(shí)共享(Creative Commons)組織的許可,轉(zhuǎn)載自The Conversation網(wǎng)站。
譯者:中慧言-王芳
Do you ever wake up some days and think, “When I was younger, I could survive on just four hours of sleep, but now it seems like I need 10”? Or have you ever walked out of the gym and “felt” your knees?
Almost everyone experiences these kinds of signs of aging. But there are some people who seem to defy their age. The late U.S. Supreme Court Justice Ruth Bader Ginsberg stayed on the bench until her death at age 87. The “Great British Bake Off” judge Mary Berry, now in her 80s, continues to inspire people all over the world to bake and enjoy life. And actor Paul Rudd was named People magazine’s “Sexiest Man Alive” in 2021 at age 52 while still looking like he’s in his 30s. Is age just a number then?
Researchers have focused a lot of attention on understanding the causes and risk factors of age-related diseases like Alzheimer’s, dementia, osteoporosis and cancer. But many ignore the major risk factor for all of these diseases: aging itself. More than any individual risk factor such as smoking or lack of exercise, the number of years you’ve lived predicts onset of disease. Indeed, aging increases the risk of multiple chronic diseases by up to a thousandfold.
However, no two people age the same. Although age is the principal risk factor for several chronic diseases, it is an unreliable indicator of how quickly your body will decline or how susceptible you are to age-related disease. This is because there is a difference between your chronological age, or the number of years you’ve been alive, and your biological age – your physical and functional ability.
I am a scientist interested in redefining “age.” Instead of benchmarking chronological age, my lab is invested in measuring biological age. Biological age is a more accurate measure of healthspan, or years lived in good health, than chronological age, and doesn’t directly correlate with wrinkles and gray hairs. Rapid agers experience a faster rate of functional deterioration relative to their chronological age.
My grandmother, who lived to be 83 but was bedridden and could not remember who I was for the last few years of her life, was a rapid ager. My grandfather, on the other hand, also lived until he was 83, but he was active, functional and even did my homework with me until he passed away – he was a healthy ager.
With the unprecedented growth of the world’s aging population, I believe that figuring out ways to measure biological age and how to maintain or delay its advance is critical not only for individual health, but also for the social, political and economic health of our society. Detecting rapid agers early on presents an opportunity to delay, change or even reverse the trajectory of biological aging.
Genetics and biological age
Biological aging is multifaceted. It arises from a complex mix of genetic traits and is influenced by factors like microbiome composition, environment, lifestyle, stress, diet and exercise.
Genetics were once thought to have no influence on aging or longevity. However, in the early 1990s, researchers reported the first studies identifying genes that were able to extend the lifespan of a small roundworm. Since then, multiple observations support the influence of genetics on aging.
For example, children of long-lived parents and even those with long-lived siblings tend to live longer. Researchers have also identified multiple genes that influence longevity and play a role in resilience and protection from stress. These include genes that repair DNA, protect cells from free radicals and regulate fat levels.
However, it is clear from studies in identical twins – who share the same genes but not the same exact lifespans – that genes are not the only factor that influences aging. In fact, genes probably account for only 20% to 30% of biological age. This suggests that other parameters can strongly influence biological aging.
Environmental and lifestyle effects
Researchers have found that environmental and lifestyle factors heavily influence biological age, including social connectedness, sleeping habits, water consumption, exercise and diet.
Social connectedness is essential for well-being throughout life. But social connections can be challenging to maintain over time due to loss of family and friends, depression, chronic illness or other factors. Several studies have reported a strong link between social isolation and increased stress, morbidity and mortality.
Similarly, diet and exercise are strong influencers of biological age. Blue zones, which are areas around the world where people live long lives, attribute their successful aging to diet, exercise and social connectedness. Mostly plant-based meals and spurts of activity throughout the day are well-known “secrets” of healthspan and longevity. Although newer studies on the effects of diet interventions such as intermittent fasting and time-restricted feeding on longevity have not been rigorously tested, they do show multiple health benefits, including better glucose and insulin regulation.
While genetics is difficult to control, diet and exercise can be modified to delay biological aging.
How to measure biological age
Currently, there is no effective test to predict an individual’s health trajectory early enough in life in order to intervene and improve quality of life with age. Scientists are interested in identifying a molecule that is sensitive and specific enough to serve as a unique fingerprint for biological age.
Considering the health and resilience of the individual instead of focusing solely on disease state is important in discussions on biological age. Resilience is the state of adapting and bouncing back from a health challenge and is often more predictive of functional health. A molecular aging fingerprint may provide a tool to help identify people who are less resilient and require more aggressive monitoring and early intervention to preserve their health and help reduce gender, racial and ethnic health disparities.
There are several promising molecular markers that may serve as biological age fingerprints.
One of these markers are epigenetic clocks. Epigenetics are chemical modifications of DNA that control gene function. Several scientists have found that DNA can get “marked” by methyl groups in a pattern that changes with age and could potentially act as a readout for aging.
It is important to note, however, that while epigenetic clocks have been valuable in predicting chronological age, they do not equate to biological age. In addition, it is unclear how these epigenetic marks work or how they contribute to aging.
Another well-regarded marker of biological age is the build-up of dysfunctional cells called senescent or zombie cells. Cells become senescent when they experience multiple types of stress and become so damaged that they cannot divide anymore, releasing molecules that cause chronic low-grade inflammation and disease.
Animal studies have shown that getting rid of these cells can improve healthspan. However, what clearly defines senescent cells in humans is still unknown, making them challenging to track as a measure of biological age.
Lastly, the body releases unique metabolites, or chemical fingerprints, as byproducts of normal metabolism. These metabolites play a dynamic and direct role in physiological regulation and can inform functional health. My lab and others are figuring out the exact makeup of these chemicals in order to figure out which can best measure biological age. A lot of work still remains on not only identifying these metabolites, but also understanding how they affect biological age.
People have long sought a fountain of youth. Whether such an elixir exists is still unknown. But research is starting to show that delaying biological age may be one way to live healthier, fuller lives.
Aditi Gurkar, Assistant Professor of Geriatric Medicine, University of Pittsburgh.
This article is republished from The Conversation under a Creative Commons license.