![](https://images1.caifuzhongwen.com/images/attachement/jpg/site1/20240621/08002780efb727df8b6004.jpg)
在最佳狀態(tài)下,醫(yī)療保健系統(tǒng)是一臺精密儀器。經(jīng)驗豐富的醫(yī)生、體貼的護士和勤勉的行政人員合作無間,優(yōu)先考慮患者的治療效果和運營效率,并將安全和健康作為最高目標。
然而,盡管這些專業(yè)人員在工作中付出了艱辛的努力,但現(xiàn)代醫(yī)療保健的需求往往超過了醫(yī)務工作者所擁有的工具的服務承載力。再加上偏遠地區(qū)和服務不足地區(qū)持續(xù)存在的勞動力短缺問題,愈加明顯的是,全國醫(yī)務工作者即使盡最大努力也無法平衡醫(yī)護人員每天面對的不斷增加的行政和運營復雜性。
今年2月symplr進行的最新《醫(yī)療保健供應鏈狀況調(diào)查》證實了這一點。受訪者在兩大關(guān)鍵方面敲響了警鐘:利潤壓力以及長期存在的人員配備和資源分配問題。在接受調(diào)查的近100位供應鏈領(lǐng)導者中,63%的人將節(jié)省成本列為其機構(gòu)今年的首要任務,這凸顯了在預算緊縮的情況下精簡運營的迫切需求。與此同時,32%的人表示,他們的供應鏈團隊尚未恢復到疫情前的人員配備水平,這凸顯了為醫(yī)療保健系統(tǒng)配備充足人員以應對未來挑戰(zhàn)的斗爭仍在繼續(xù)。
其他研究支持調(diào)查提出的擔憂,并清楚地表明,不僅僅是醫(yī)療保健系統(tǒng)的一部分面臨此類挑戰(zhàn)。例如,美國護理人員招聘機構(gòu)NSI發(fā)布的2023年《全國醫(yī)療保健留任和注冊護士配備報告》描繪了一幅嚴峻的圖景,顯示該行業(yè)面臨勞動力危機,超過四分之三的醫(yī)院面臨護士空缺率超過10%的問題。這些短缺不僅給現(xiàn)有員工造成壓力,而且危及患者護理,加劇了機構(gòu)面臨的障礙。
這些挑戰(zhàn)不一定會對醫(yī)療保健行業(yè)造成永久性的損害。在工作場所廣泛應用人工智能是我們改善患者治療效果和避免醫(yī)護人員倦怠的一種方法。將人工智能集成到軟件中的公司將確保醫(yī)療保健系統(tǒng)能夠妥善地安排人才,使他們能夠優(yōu)先關(guān)注患者護理。
人工智能如何幫助醫(yī)護人員?
如果你問普通人人工智能對他們意味著什么,他們會立即想到ChatGPT這樣的生成式人工智能程序。實際上,人工智能是一個更為廣泛的軟件類別,它模擬直覺來處理復雜的任務。通過以智能、有計劃且安全的方式部署機器學習技術(shù)和人工智能,我們可以簡化流程,提高效率,使醫(yī)護人員能夠?qū)⒆⒁饬性谧钚枰牡胤健疹櫜∪恕?/p>
這種潛力體現(xiàn)在醫(yī)療保健供應鏈領(lǐng)導者對行業(yè)未來的樂觀態(tài)度上。今年2月,他們表示:“利用技術(shù)改變?nèi)斯ち鞒?,并加快供應鏈工作流程”是改善供應鏈運營的最大機遇之一。此外,84%的醫(yī)療保健行業(yè)領(lǐng)導者表示,2023年,在他們所在的機構(gòu)中整合軟件將有助于臨床醫(yī)生重新分配更多時間用于患者護理,80%的人表示,使用不同的系統(tǒng)使他們的工作復雜化。合理開發(fā)的人工智能軟件解決方案將幫助醫(yī)療機構(gòu)整合和簡化文書工作,有助于工作人員在更短的時間內(nèi)接觸到更多患者。
人工智能改善醫(yī)護人員生活的機遇并非沒有風險。誠然,將如此重要的工作委托給自動化系統(tǒng)需要深思熟慮。醫(yī)療保健行業(yè)的領(lǐng)導者在將人工智能整合到他們的運營中時,要提出正確的問題并遵循周密的流程。
醫(yī)療保健領(lǐng)域沒有放之四海而皆準的人工智能解決方案
作為一名長期從事軟件工作的高管,我認識到客戶比你更了解他們的組織。在制定人工智能解決方案之前,首先要了解客戶需要填補的空白以及希望解決的低效問題,這一點非常重要。首要的是,為一家醫(yī)院這樣的大型機構(gòu)更改軟件系統(tǒng)必須遵循相關(guān)流程,做到有條不紊。
在沒有制定如何在更廣泛的醫(yī)療保健系統(tǒng)中讓技術(shù)發(fā)揮作用的戰(zhàn)略的情況下,部署強大的技術(shù)可能無法起到應有的作用,甚至會產(chǎn)生有害影響。對于將人工智能整合到其運營中的醫(yī)療系統(tǒng)來說,找到一個在這方面經(jīng)驗豐富的合作伙伴至關(guān)重要。好消息是,雖然許多人認為人工智能是一項全新的技術(shù),但許多實力雄厚的公司數(shù)十年來一直在從事人工智能的早期迭代工作。我在技術(shù)領(lǐng)域工作了20年,親眼目睹了許多不同公司將人工智能整合到運營中,并取得巨大成功。
行業(yè)領(lǐng)導者多年來一直在開發(fā)機器學習技術(shù),而且熟悉其功能和細微差別。我們的許多客戶甚至沒有意識到機器學習是支持其運營的軟件的一部分。采用機器學習技術(shù)的下一代醫(yī)療保健解決方案將更加面向客戶,但這并不意味著它將擾亂醫(yī)護人員對其工作的理解。相反,其工作將變得更輕松、更精簡,因此,可以在節(jié)省工時的同時,提高員工的效率和可持續(xù)性。
在我們的醫(yī)療保健系統(tǒng)中正確部署人工智能,就能帶來這種微妙卻具有變革性的變化。醫(yī)療保健系統(tǒng)依賴于患者的信任,因此,在醫(yī)療保健領(lǐng)域進行此類變革時,深思熟慮至關(guān)重要。患者及其親人必須相信醫(yī)生會提供高質(zhì)量的醫(yī)療服務并保護其健康。也需要珍視患者和護理人員之間的紐帶。
我相信,人工智能技術(shù)可以改善醫(yī)療服務,加強這一神圣紐帶。部署人工智能技術(shù)責任重大,而且也是一項棘手的任務。醫(yī)療保健行業(yè)的領(lǐng)導者必須與技術(shù)專家合作,確保人工智能用于解決實際問題,并盡可能減少干擾。勠力同心,我們可以確保醫(yī)院在現(xiàn)在和未來繼續(xù)為患者提供服務。(財富中文網(wǎng))
BJ·沙克諾夫斯基(BJ Schaknowski)是醫(yī)療保健技術(shù)公司symplr的首席執(zhí)行官,該公司為美國90%的醫(yī)院提供軟件解決方案。
譯者:中慧言-王芳
在最佳狀態(tài)下,醫(yī)療保健系統(tǒng)是一臺精密儀器。經(jīng)驗豐富的醫(yī)生、體貼的護士和勤勉的行政人員合作無間,優(yōu)先考慮患者的治療效果和運營效率,并將安全和健康作為最高目標。
然而,盡管這些專業(yè)人員在工作中付出了艱辛的努力,但現(xiàn)代醫(yī)療保健的需求往往超過了醫(yī)務工作者所擁有的工具的服務承載力。再加上偏遠地區(qū)和服務不足地區(qū)持續(xù)存在的勞動力短缺問題,愈加明顯的是,全國醫(yī)務工作者即使盡最大努力也無法平衡醫(yī)護人員每天面對的不斷增加的行政和運營復雜性。
今年2月symplr進行的最新《醫(yī)療保健供應鏈狀況調(diào)查》證實了這一點。受訪者在兩大關(guān)鍵方面敲響了警鐘:利潤壓力以及長期存在的人員配備和資源分配問題。在接受調(diào)查的近100位供應鏈領(lǐng)導者中,63%的人將節(jié)省成本列為其機構(gòu)今年的首要任務,這凸顯了在預算緊縮的情況下精簡運營的迫切需求。與此同時,32%的人表示,他們的供應鏈團隊尚未恢復到疫情前的人員配備水平,這凸顯了為醫(yī)療保健系統(tǒng)配備充足人員以應對未來挑戰(zhàn)的斗爭仍在繼續(xù)。
其他研究支持調(diào)查提出的擔憂,并清楚地表明,不僅僅是醫(yī)療保健系統(tǒng)的一部分面臨此類挑戰(zhàn)。例如,美國護理人員招聘機構(gòu)NSI發(fā)布的2023年《全國醫(yī)療保健留任和注冊護士配備報告》描繪了一幅嚴峻的圖景,顯示該行業(yè)面臨勞動力危機,超過四分之三的醫(yī)院面臨護士空缺率超過10%的問題。這些短缺不僅給現(xiàn)有員工造成壓力,而且危及患者護理,加劇了機構(gòu)面臨的障礙。
這些挑戰(zhàn)不一定會對醫(yī)療保健行業(yè)造成永久性的損害。在工作場所廣泛應用人工智能是我們改善患者治療效果和避免醫(yī)護人員倦怠的一種方法。將人工智能集成到軟件中的公司將確保醫(yī)療保健系統(tǒng)能夠妥善地安排人才,使他們能夠優(yōu)先關(guān)注患者護理。
人工智能如何幫助醫(yī)護人員?
如果你問普通人人工智能對他們意味著什么,他們會立即想到ChatGPT這樣的生成式人工智能程序。實際上,人工智能是一個更為廣泛的軟件類別,它模擬直覺來處理復雜的任務。通過以智能、有計劃且安全的方式部署機器學習技術(shù)和人工智能,我們可以簡化流程,提高效率,使醫(yī)護人員能夠?qū)⒆⒁饬性谧钚枰牡胤健疹櫜∪恕?/p>
這種潛力體現(xiàn)在醫(yī)療保健供應鏈領(lǐng)導者對行業(yè)未來的樂觀態(tài)度上。今年2月,他們表示:“利用技術(shù)改變?nèi)斯ち鞒?,并加快供應鏈工作流程”是改善供應鏈運營的最大機遇之一。此外,84%的醫(yī)療保健行業(yè)領(lǐng)導者表示,2023年,在他們所在的機構(gòu)中整合軟件將有助于臨床醫(yī)生重新分配更多時間用于患者護理,80%的人表示,使用不同的系統(tǒng)使他們的工作復雜化。合理開發(fā)的人工智能軟件解決方案將幫助醫(yī)療機構(gòu)整合和簡化文書工作,有助于工作人員在更短的時間內(nèi)接觸到更多患者。
人工智能改善醫(yī)護人員生活的機遇并非沒有風險。誠然,將如此重要的工作委托給自動化系統(tǒng)需要深思熟慮。醫(yī)療保健行業(yè)的領(lǐng)導者在將人工智能整合到他們的運營中時,要提出正確的問題并遵循周密的流程。
醫(yī)療保健領(lǐng)域沒有放之四海而皆準的人工智能解決方案
作為一名長期從事軟件工作的高管,我認識到客戶比你更了解他們的組織。在制定人工智能解決方案之前,首先要了解客戶需要填補的空白以及希望解決的低效問題,這一點非常重要。首要的是,為一家醫(yī)院這樣的大型機構(gòu)更改軟件系統(tǒng)必須遵循相關(guān)流程,做到有條不紊。
在沒有制定如何在更廣泛的醫(yī)療保健系統(tǒng)中讓技術(shù)發(fā)揮作用的戰(zhàn)略的情況下,部署強大的技術(shù)可能無法起到應有的作用,甚至會產(chǎn)生有害影響。對于將人工智能整合到其運營中的醫(yī)療系統(tǒng)來說,找到一個在這方面經(jīng)驗豐富的合作伙伴至關(guān)重要。好消息是,雖然許多人認為人工智能是一項全新的技術(shù),但許多實力雄厚的公司數(shù)十年來一直在從事人工智能的早期迭代工作。我在技術(shù)領(lǐng)域工作了20年,親眼目睹了許多不同公司將人工智能整合到運營中,并取得巨大成功。
行業(yè)領(lǐng)導者多年來一直在開發(fā)機器學習技術(shù),而且熟悉其功能和細微差別。我們的許多客戶甚至沒有意識到機器學習是支持其運營的軟件的一部分。采用機器學習技術(shù)的下一代醫(yī)療保健解決方案將更加面向客戶,但這并不意味著它將擾亂醫(yī)護人員對其工作的理解。相反,其工作將變得更輕松、更精簡,因此,可以在節(jié)省工時的同時,提高員工的效率和可持續(xù)性。
在我們的醫(yī)療保健系統(tǒng)中正確部署人工智能,就能帶來這種微妙卻具有變革性的變化。醫(yī)療保健系統(tǒng)依賴于患者的信任,因此,在醫(yī)療保健領(lǐng)域進行此類變革時,深思熟慮至關(guān)重要?;颊呒捌溆H人必須相信醫(yī)生會提供高質(zhì)量的醫(yī)療服務并保護其健康。也需要珍視患者和護理人員之間的紐帶。
我相信,人工智能技術(shù)可以改善醫(yī)療服務,加強這一神圣紐帶。部署人工智能技術(shù)責任重大,而且也是一項棘手的任務。醫(yī)療保健行業(yè)的領(lǐng)導者必須與技術(shù)專家合作,確保人工智能用于解決實際問題,并盡可能減少干擾。勠力同心,我們可以確保醫(yī)院在現(xiàn)在和未來繼續(xù)為患者提供服務。(財富中文網(wǎng))
BJ·沙克諾夫斯基(BJ Schaknowski)是醫(yī)療保健技術(shù)公司symplr的首席執(zhí)行官,該公司為美國90%的醫(yī)院提供軟件解決方案。
譯者:中慧言-王芳
At its best, the health care system is a finely-tuned machine. Seasoned doctors, thoughtful nurses, and diligent administrative staff work together smoothly, prioritizing patient outcomes and operational efficiency, keeping safety and wellness as their highest goal.
Yet despite the hard work each of these professionals puts into their jobs, the demands of modern health care too often outpace the tools that medical workers have been given. When combined with persistent workforce shortages that are particularly pronounced in remote and underserved areas, it becomes increasingly clear that the best efforts of medical workers nationwide cannot balance out the rising administrative and operational complexities health care workers confront every day.
The latest symplr State of Healthcare Supply Chain Survey, conducted in February, confirms this. Respondents sounded the alarm on two critical fronts: margin pressures and the perennial struggle with staffing and resource allocation. Among the nearly 100 supply chain leaders surveyed, 63% earmarked cost savings as their organization’s top priority for this year, highlighting the urgent need for streamlined operations amidst tightening budgets. Meanwhile, 32% said that their supply chain teams have yet to rebound to pre-pandemic staffing levels, underscoring the persistent battle to adequately equip health care systems for the challenges ahead.
Other studies back up the concerns voiced in the survey, making it clear that it’s not just one part of the health care system that faces such challenges. For example, the 2023 NSI National Health Care Retention & RN Staffing Report paints a stark picture of the workforce crisis gripping the industry, with over three-quarters of hospitals facing nurse vacancy rates exceeding 10%. These shortages not only strain existing staff but also imperil patient care, compounding organizational hurdles.
These challenges do not have to be permanently debilitating to the health care industry. The expanded use of artificial intelligence in the workplace is one way that we can work to improve patient outcomes and avoid health care worker burnout. Companies that integrate AI into their software will be able to ensure that health care systems can deploy talent wisely, allowing them to focus on patient care first and foremost.
How can AI be helpful to health care workers?
If you ask the average person about what artificial intelligence means to them, they will immediately jump to generative AI programs like ChatGPT. In reality, AI is a far broader category of software that simulates intuition to handle complex tasks. Through machine learning and AI that is deployed smartly, intentionally, and safely, we can streamline processes and create efficiencies that empower health care workers to focus their time where it is most needed—caring for patients.
This potential is reflected in the areas of optimism that health care supply chain leaders have for the future of their industry. In February, they indicated that “l(fā)everaging technology to transform manual processes and accelerate supply chain workflows” is among the biggest opportunities to improve supply chain ops. In addition, 84% of health care leaders said in 2023 that consolidating software at their organization would help clinicians redirect a substantial amount of time to patient care, and 80% said working with disparate systems complicates their job. Properly developed AI software solutions will help health care organizations consolidate and simplify paperwork and help workers reach more patients in less time.
The opportunity for AI to improve health care workers’ lives is not without risk. Entrusting such important work to automated systems will, of course, need to be done in a thoughtful manner. It’s important that health care leaders ask the right questions and follow a thoughtful process as they integrate AI into their operations.
There’s no one-size-fits-all AI solution to health care
As a longtime software executive, I’ve learned that customers know their organizations better than you do. It’s important to start by understanding the gaps that a customer needs to fill and the inefficiencies they hope to address before prescribing an AI-powered solution. Above all else, changing a software system for an organization as large as even one hospital must be a methodical process.
Deploying powerful technology without a strategy for how it will function in a broader health care system can make it ineffective or even detrimental. For health care systems integrating AI into their operations, it’s important to find a partner that is experienced with this work. The good news is that while many people think of AI as a completely new technology, many great companies have been working with earlier iterations of AI for decades. In my 20 years in the tech sector, I’ve seen it integrated into operations at many different companies to great success.
Industry leaders have been developing machine learning for years and are familiar with its capabilities and nuances. Many of our customers aren’t even aware that it’s part of the software powering their operations. The next generation of health care solutions that incorporate machine learning will be more client-facing—but that doesn’t mean it will disrupt health care workers’ understanding of their jobs. Instead, work will simply become easier and more streamlined, saving man-hours while making staff more efficient and sustainable.
This is the kind of subtle yet transformative change that can happen when AI is deployed correctly in our health care systems. It’s important to be incredibly thoughtful with such changes in the health care space. That’s because the health care system depends on patient trust. Patients and their loved ones must trust doctors to deliver high-quality care and protect their well-being. The bond between patient and caregiver needs to be treasured.
I’m confident that AI technology can improve care and strengthen this sacred bond. Deploying it is a meaningful responsibility and a delicate task. Health care leaders must work with technologists to ensure that AI is used to address real problems with as little disruption as possible. Together, we can ensure that our hospitals continue to work for patients, today and tomorrow.
BJ Schaknowski is the CEO of symplr, a health care technology company that provides software solutions for 9 of 10 hospitals in the U.S.