有時(shí),創(chuàng)始人會(huì)過(guò)于沉迷技術(shù),卻忽視了創(chuàng)建商業(yè)上可行的業(yè)務(wù)所需的其他元素。
我就經(jīng)歷過(guò),確實(shí)是這么做過(guò),也從中吸取了教訓(xùn)。
2013年,我的工作相當(dāng)不錯(cuò),當(dāng)時(shí)我在一家上市公司擔(dān)任高管,薪資豐厚又穩(wěn)定。但我總覺(jué)得不滿意,感覺(jué)工作把我變成了機(jī)器,渴望重新創(chuàng)造點(diǎn)什么。
我創(chuàng)辦過(guò)服務(wù)企業(yè),有兩家非營(yíng)利組織現(xiàn)在還在,但我從未嘗試過(guò)做產(chǎn)品的公司。恰好我剛做了一個(gè)視頻技術(shù)相關(guān)的項(xiàng)目,發(fā)現(xiàn)視頻應(yīng)用人工智能蘊(yùn)含著巨大機(jī)遇。
沒(méi)多久我就辭職了。一位朋友向我介紹了技術(shù)聯(lián)合創(chuàng)始人。其實(shí)我在自家就發(fā)現(xiàn)了實(shí)用案例:我給孩子拍了很多G視頻,想要整理成方便重溫的珍貴片段卻很難。
我們把應(yīng)用做得很豐富,可以用人工智能自動(dòng)標(biāo)記、分類和搜索視頻,這樣就能很容易地找到珍貴時(shí)刻或“自動(dòng)”創(chuàng)建精彩片段。(請(qǐng)注意,這可是2013年,當(dāng)時(shí)谷歌照片還沒(méi)用上人工智能,蘋果照片也還沒(méi)有應(yīng)用面部識(shí)別技術(shù)。)
團(tuán)隊(duì)很快擴(kuò)充到10人,不到三年就推出了基于人工智能的技術(shù)領(lǐng)先的視頻標(biāo)簽解決方案,可以通過(guò)瀏覽器或iPhone應(yīng)用訪問(wèn)。產(chǎn)品也聚起了不少用戶。
聽(tīng)起來(lái)是不是很像完美的創(chuàng)業(yè)故事?結(jié)果并非如此。最后,我們做出了艱難但正確的決定,把公司關(guān)了。我后悔嗎?并不。我從Viblio學(xué)到的經(jīng)驗(yàn)教訓(xùn)比在“機(jī)器模式”中過(guò)三年更有價(jià)值。
失敗并不是因?yàn)閳?zhí)行不力,而是假設(shè)有問(wèn)題。以下是我們的三個(gè)錯(cuò)誤假設(shè):
反饋?zhàn)阋宰C明產(chǎn)品與市場(chǎng)的契合度
創(chuàng)始人經(jīng)常收到建議,即收集潛在客戶的反饋驗(yàn)證想法。我們照做了。我們首先采訪了符合目標(biāo)受眾標(biāo)準(zhǔn)的朋友。之后擴(kuò)大范圍,訪問(wèn)了活動(dòng)中遇到的人。我們付費(fèi)調(diào)查了1000名想測(cè)試的不同細(xì)分市場(chǎng)的人。我們分析相關(guān)數(shù)據(jù),納入推介方案,顯示產(chǎn)品與市場(chǎng)的契合度。
這并不是說(shuō)創(chuàng)始人得到的建議有誤,只是這么做獲得的信息經(jīng)常掐頭去尾,不夠完整,也不夠精練。
實(shí)際情況是,人們不喜歡當(dāng)面告訴你這個(gè)創(chuàng)意機(jī)會(huì)不大。通過(guò)各種調(diào)研我們發(fā)現(xiàn),人們認(rèn)為這項(xiàng)技術(shù)很酷(因?yàn)榇_實(shí)如此?。?。但這并不意味著所有人都愿意付費(fèi)使用。
我應(yīng)該發(fā)起預(yù)售,也就是介紹產(chǎn)品的網(wǎng)站,預(yù)付一定款項(xiàng)就能獲得大幅折扣。如此我們能獲得真實(shí)的數(shù)據(jù),從中看出目標(biāo)受眾有沒(méi)有從產(chǎn)品中看到足夠的價(jià)值,且愿意為此付費(fèi)。
如果沒(méi)法獲得買家的承諾,產(chǎn)品與市場(chǎng)的契合度就只能靠運(yùn)氣。
更多功能可提高粘性
我們并不是沒(méi)有用戶。產(chǎn)品采用了免費(fèi)增值模式,人們可以免費(fèi)使用服務(wù),理論上以后會(huì)開(kāi)發(fā)更多需要訂閱的功能。
然而,用戶并沒(méi)有繼續(xù)留在平臺(tái)上。他們上傳視頻,使用了一些功能然后就消失了。
為了吸引用戶,我們?cè)黾恿烁喙δ?,首先是自?dòng)創(chuàng)建精彩視頻集,發(fā)送給早期用戶,鼓勵(lì)他們創(chuàng)建更多精彩視頻。我們還添加了“臉部頁(yè)面”,用戶點(diǎn)擊一張臉就會(huì)加載帶有這張臉的所有視頻。我們還嘗試了很多自認(rèn)為很酷的東西。但都沒(méi)增加用戶粘性。
事實(shí)證明,我們解決的問(wèn)題本身就是錯(cuò)誤的。我們以為要解決粘性問(wèn)題,但始終沒(méi)解決產(chǎn)品與市場(chǎng)的契合問(wèn)題。
我們能找到需要的人才
創(chuàng)立Viblio時(shí),人工智能正經(jīng)歷爆炸式發(fā)展(今天仍然如此,但方式完全不同)。當(dāng)時(shí)谷歌剛收購(gòu)DeepMind,科技公司正以六位數(shù)高薪雇傭機(jī)器學(xué)習(xí)專家。我們的種子資金根本不夠。
我和聯(lián)合創(chuàng)始人想在圈子里找合適的技術(shù)人員或目標(biāo)市場(chǎng)都有點(diǎn)困難。我們運(yùn)氣不錯(cuò)找到一位資深人工智能專家,還聘請(qǐng)了一名剛大學(xué)畢業(yè)的機(jī)器學(xué)習(xí)工程師。再想找其他人基本不可能。我們做得不錯(cuò),但僅僅靠著不錯(cuò)想在競(jìng)爭(zhēng)激烈的領(lǐng)域創(chuàng)業(yè)遠(yuǎn)遠(yuǎn)不夠。
現(xiàn)在作為初創(chuàng)公司的顧問(wèn),我想到了曾經(jīng)錯(cuò)誤的假設(shè),也就是只要花錢就能組建合適的團(tuán)隊(duì)。一般來(lái)說(shuō)如果人們選擇高要求高風(fēng)險(xiǎn)的路,要么為了高薪,要么是為了追隨仰慕之人。如果人際圈中沒(méi)有業(yè)務(wù)領(lǐng)域的專家,花錢也不一定能組起需要的團(tuán)隊(duì)。
失敗的價(jià)值
這三個(gè)假設(shè)導(dǎo)致我們距離產(chǎn)品真正契合市場(chǎng)越來(lái)越遠(yuǎn)。
由此,我開(kāi)始體會(huì)到這段經(jīng)歷最大的收獲。硅谷宣揚(yáng)的所謂要找到產(chǎn)品與市場(chǎng)的契合點(diǎn)只是很小一塊。必須對(duì)市場(chǎng)充滿熱情。要深入了解,還要擁有與之相關(guān)的人才組成的系統(tǒng)。
2016年,我們關(guān)閉了Viblio。即便公司失敗,這段經(jīng)歷本身并沒(méi)有失敗。三年時(shí)間里,我學(xué)到的經(jīng)驗(yàn)比當(dāng)六年企業(yè)高管還要多。創(chuàng)業(yè)能教會(huì)人們安穩(wěn)工作時(shí)永遠(yuǎn)也學(xué)不到的東西。在我創(chuàng)業(yè)失敗獲得的諸多教訓(xùn)中,有三條對(duì)于后來(lái)的成功格外有用:
? 少花錢多辦事。我們用非常有限的預(yù)算構(gòu)建了功能齊全的人工智能視頻平臺(tái)。很多上規(guī)模的公司之所以失敗,就是因?yàn)楹苌瞄L(zhǎng)花錢,最終卻沒(méi)做出多少實(shí)事!
? 嚴(yán)格確定重點(diǎn)。感覺(jué)上很多事都有必要,但并非一切都重要。要結(jié)束看起來(lái)很酷的事很困難,如果沒(méi)效果就必須放棄。
? 正如他們所說(shuō),“要愛(ài)上問(wèn)題,而不是解決方案。”(財(cái)富中文網(wǎng))
莫娜·薩貝特為初創(chuàng)公司提供咨詢服務(wù),擔(dān)任董事會(huì)成員,合著有新書《揚(yáng)帆起航:初創(chuàng)公司從啟動(dòng)到退出如何避免錯(cuò)誤》(Sail to Scale: Steering Startups Clear of Mistakes from Launch to Exit)。
譯者:梁宇
審校:夏林
有時(shí),創(chuàng)始人會(huì)過(guò)于沉迷技術(shù),卻忽視了創(chuàng)建商業(yè)上可行的業(yè)務(wù)所需的其他元素。
我就經(jīng)歷過(guò),確實(shí)是這么做過(guò),也從中吸取了教訓(xùn)。
2013年,我的工作相當(dāng)不錯(cuò),當(dāng)時(shí)我在一家上市公司擔(dān)任高管,薪資豐厚又穩(wěn)定。但我總覺(jué)得不滿意,感覺(jué)工作把我變成了機(jī)器,渴望重新創(chuàng)造點(diǎn)什么。
我創(chuàng)辦過(guò)服務(wù)企業(yè),有兩家非營(yíng)利組織現(xiàn)在還在,但我從未嘗試過(guò)做產(chǎn)品的公司。恰好我剛做了一個(gè)視頻技術(shù)相關(guān)的項(xiàng)目,發(fā)現(xiàn)視頻應(yīng)用人工智能蘊(yùn)含著巨大機(jī)遇。
沒(méi)多久我就辭職了。一位朋友向我介紹了技術(shù)聯(lián)合創(chuàng)始人。其實(shí)我在自家就發(fā)現(xiàn)了實(shí)用案例:我給孩子拍了很多G視頻,想要整理成方便重溫的珍貴片段卻很難。
我們把應(yīng)用做得很豐富,可以用人工智能自動(dòng)標(biāo)記、分類和搜索視頻,這樣就能很容易地找到珍貴時(shí)刻或“自動(dòng)”創(chuàng)建精彩片段。(請(qǐng)注意,這可是2013年,當(dāng)時(shí)谷歌照片還沒(méi)用上人工智能,蘋果照片也還沒(méi)有應(yīng)用面部識(shí)別技術(shù)。)
團(tuán)隊(duì)很快擴(kuò)充到10人,不到三年就推出了基于人工智能的技術(shù)領(lǐng)先的視頻標(biāo)簽解決方案,可以通過(guò)瀏覽器或iPhone應(yīng)用訪問(wèn)。產(chǎn)品也聚起了不少用戶。
聽(tīng)起來(lái)是不是很像完美的創(chuàng)業(yè)故事?結(jié)果并非如此。最后,我們做出了艱難但正確的決定,把公司關(guān)了。我后悔嗎?并不。我從Viblio學(xué)到的經(jīng)驗(yàn)教訓(xùn)比在“機(jī)器模式”中過(guò)三年更有價(jià)值。
失敗并不是因?yàn)閳?zhí)行不力,而是假設(shè)有問(wèn)題。以下是我們的三個(gè)錯(cuò)誤假設(shè):
反饋?zhàn)阋宰C明產(chǎn)品與市場(chǎng)的契合度
創(chuàng)始人經(jīng)常收到建議,即收集潛在客戶的反饋驗(yàn)證想法。我們照做了。我們首先采訪了符合目標(biāo)受眾標(biāo)準(zhǔn)的朋友。之后擴(kuò)大范圍,訪問(wèn)了活動(dòng)中遇到的人。我們付費(fèi)調(diào)查了1000名想測(cè)試的不同細(xì)分市場(chǎng)的人。我們分析相關(guān)數(shù)據(jù),納入推介方案,顯示產(chǎn)品與市場(chǎng)的契合度。
這并不是說(shuō)創(chuàng)始人得到的建議有誤,只是這么做獲得的信息經(jīng)常掐頭去尾,不夠完整,也不夠精練。
實(shí)際情況是,人們不喜歡當(dāng)面告訴你這個(gè)創(chuàng)意機(jī)會(huì)不大。通過(guò)各種調(diào)研我們發(fā)現(xiàn),人們認(rèn)為這項(xiàng)技術(shù)很酷(因?yàn)榇_實(shí)如此?。?。但這并不意味著所有人都愿意付費(fèi)使用。
我應(yīng)該發(fā)起預(yù)售,也就是介紹產(chǎn)品的網(wǎng)站,預(yù)付一定款項(xiàng)就能獲得大幅折扣。如此我們能獲得真實(shí)的數(shù)據(jù),從中看出目標(biāo)受眾有沒(méi)有從產(chǎn)品中看到足夠的價(jià)值,且愿意為此付費(fèi)。
如果沒(méi)法獲得買家的承諾,產(chǎn)品與市場(chǎng)的契合度就只能靠運(yùn)氣。
更多功能可提高粘性
我們并不是沒(méi)有用戶。產(chǎn)品采用了免費(fèi)增值模式,人們可以免費(fèi)使用服務(wù),理論上以后會(huì)開(kāi)發(fā)更多需要訂閱的功能。
然而,用戶并沒(méi)有繼續(xù)留在平臺(tái)上。他們上傳視頻,使用了一些功能然后就消失了。
為了吸引用戶,我們?cè)黾恿烁喙δ埽紫仁亲詣?dòng)創(chuàng)建精彩視頻集,發(fā)送給早期用戶,鼓勵(lì)他們創(chuàng)建更多精彩視頻。我們還添加了“臉部頁(yè)面”,用戶點(diǎn)擊一張臉就會(huì)加載帶有這張臉的所有視頻。我們還嘗試了很多自認(rèn)為很酷的東西。但都沒(méi)增加用戶粘性。
事實(shí)證明,我們解決的問(wèn)題本身就是錯(cuò)誤的。我們以為要解決粘性問(wèn)題,但始終沒(méi)解決產(chǎn)品與市場(chǎng)的契合問(wèn)題。
我們能找到需要的人才
創(chuàng)立Viblio時(shí),人工智能正經(jīng)歷爆炸式發(fā)展(今天仍然如此,但方式完全不同)。當(dāng)時(shí)谷歌剛收購(gòu)DeepMind,科技公司正以六位數(shù)高薪雇傭機(jī)器學(xué)習(xí)專家。我們的種子資金根本不夠。
我和聯(lián)合創(chuàng)始人想在圈子里找合適的技術(shù)人員或目標(biāo)市場(chǎng)都有點(diǎn)困難。我們運(yùn)氣不錯(cuò)找到一位資深人工智能專家,還聘請(qǐng)了一名剛大學(xué)畢業(yè)的機(jī)器學(xué)習(xí)工程師。再想找其他人基本不可能。我們做得不錯(cuò),但僅僅靠著不錯(cuò)想在競(jìng)爭(zhēng)激烈的領(lǐng)域創(chuàng)業(yè)遠(yuǎn)遠(yuǎn)不夠。
現(xiàn)在作為初創(chuàng)公司的顧問(wèn),我想到了曾經(jīng)錯(cuò)誤的假設(shè),也就是只要花錢就能組建合適的團(tuán)隊(duì)。一般來(lái)說(shuō)如果人們選擇高要求高風(fēng)險(xiǎn)的路,要么為了高薪,要么是為了追隨仰慕之人。如果人際圈中沒(méi)有業(yè)務(wù)領(lǐng)域的專家,花錢也不一定能組起需要的團(tuán)隊(duì)。
失敗的價(jià)值
這三個(gè)假設(shè)導(dǎo)致我們距離產(chǎn)品真正契合市場(chǎng)越來(lái)越遠(yuǎn)。
由此,我開(kāi)始體會(huì)到這段經(jīng)歷最大的收獲。硅谷宣揚(yáng)的所謂要找到產(chǎn)品與市場(chǎng)的契合點(diǎn)只是很小一塊。必須對(duì)市場(chǎng)充滿熱情。要深入了解,還要擁有與之相關(guān)的人才組成的系統(tǒng)。
2016年,我們關(guān)閉了Viblio。即便公司失敗,這段經(jīng)歷本身并沒(méi)有失敗。三年時(shí)間里,我學(xué)到的經(jīng)驗(yàn)比當(dāng)六年企業(yè)高管還要多。創(chuàng)業(yè)能教會(huì)人們安穩(wěn)工作時(shí)永遠(yuǎn)也學(xué)不到的東西。在我創(chuàng)業(yè)失敗獲得的諸多教訓(xùn)中,有三條對(duì)于后來(lái)的成功格外有用:
? 少花錢多辦事。我們用非常有限的預(yù)算構(gòu)建了功能齊全的人工智能視頻平臺(tái)。很多上規(guī)模的公司之所以失敗,就是因?yàn)楹苌瞄L(zhǎng)花錢,最終卻沒(méi)做出多少實(shí)事!
? 嚴(yán)格確定重點(diǎn)。感覺(jué)上很多事都有必要,但并非一切都重要。要結(jié)束看起來(lái)很酷的事很困難,如果沒(méi)效果就必須放棄。
? 正如他們所說(shuō),“要愛(ài)上問(wèn)題,而不是解決方案?!保ㄘ?cái)富中文網(wǎng))
莫娜·薩貝特為初創(chuàng)公司提供咨詢服務(wù),擔(dān)任董事會(huì)成員,合著有新書《揚(yáng)帆起航:初創(chuàng)公司從啟動(dòng)到退出如何避免錯(cuò)誤》(Sail to Scale: Steering Startups Clear of Mistakes from Launch to Exit)。
譯者:梁宇
審校:夏林
Sometimes founders fall so deeply in love with their technology that they become blind to the other elements they need to create a commercially viable business.
I’ve been there. I’ve done that. And I’ve learned from it.
Back in 2013, I had the dream job—executive role, great salary, stability at a public company. But I still wasn’t satisfied. I felt my job had made me an optimizer when I was itching to get back to being a builder.
I had founded services businesses before—and two nonprofits that continue to this day—but I had never built a product company. I had just finished a project about video technology and saw the huge opportunity in artificial intelligence applied to video.
Next thing I knew, I was quitting my job. A friend introduced me to a technical cofounder. I found the use case literally in my backyard: gigabytes of family videos of my young kids, impossible to organize into precious little bits I could relive.
We fleshed out the application, using AI to automatically tag, categorize, and search videos so you could easily find priceless moments or create “automagic” highlight reels. (Remember, this was in 2013, before Google Photos leveraged AI or Apple Photos used facial recognition.)
We grew to a team of 10, and in less than three years, we launched an advanced AI-based video tagging solution—available as an application accessed through a browser or in an iPhone app. And we had users.
Perfect startup story? It turned out not to be. In the end, we made the tough—but right—decision to shut down the venture. Do I regret that time? No. The lessons I learned from Viblio were more valuable than spending three years in “optimizer mode.”
Our failure wasn’t about execution—it was about assumptions. Here are the three mistaken assumptions we made:
Feedback is sufficient to prove product-market fit
A common piece of advice for founders is to validate their idea by seeking early feedback from potential customers. So, we did that. We started with interviews with friends who fit our target audience. We widened the circle to interview people we met at events. We paid to survey a thousand people that fit different market segments we wanted to test out. We analyzed the data and included it in our pitch decks to show product-market fit.
It’s not that the advice we get as founders is wrong—it’s just truncated, incomplete, pithy.
Here’s the thing. People don’t like telling you to your face that your idea isn’t going to be big. Our efforts showed that people thought the tech was cool (because it was!). But that didn’t mean anyone would pay to use the application we wanted to build.
What I should have done is set up a presell campaign: a website describing our product and offering a deep discount if people prepaid for the promise of delivery in the future. That would have given us real data on whether our target audience saw enough value in our product to pay something—anything—for it.
If you can’t get buyer commitment, it’s product-market fit by luck.
More features will drive stickiness
It’s not that we didn’t have users. We operated on a freemium model, where people could use our service for free with the theory that we’d build more features later that would require a subscription.
It’s just that our users didn’t stay engaged on our platform. They uploaded their videos, they played with some of our features, and then they disappeared.
So, we added more features, starting with automagically-created highlight reels that we sent to our early users along with a call to action to create more themselves. We added a “face page,” where you could click on a face and we’d load all the videos we found that contained that face. We tried doing a lot of other things we thought were really cool. Nothing drove stickiness.
Turns out we were solving the wrong problem. We thought we were solving for stickiness—but we still hadn’t solved for product-market fit.
We can hire who we need
When we started Viblio, AI was exploding (and still is today, but in a completely different way). Google had just acquired DeepMind, and tech companies were hiring machine learning specialists at high six-figure salaries. Our seed money just didn’t cut it.
Neither my cofounder nor I had the natural ecosystem for the right tech people or target markets. We lucked out engaging a senior AI person and ended up hiring a straight-out-of-college machine learning engineer. But it was impossible to hire anyone else in that field. We did pretty well, but pretty well isn’t enough to build a company in a highly competitive field.
As an advisor to startups today, I think about the mistaken assumption we made—that we could just pay our way to the right team. People choose demanding high-risk journeys either because they are paid a lot or because they are following other people they want to follow. If you lack people in your ecosystem who are experts in your startup’s area of focus, you won’t likely pay your way to the team you need.
The value of failure
These three assumptions led us further and further away from realizing our true product-market fit.
And thus, I came to understand my biggest learning. The Silicon Valley hype of finding your product-market fit isn’t enough. You must have passion about the market you are playing in. You must understand it, and have an ecosystem of people you can draw from who are connected to it.
We shut down Viblio in 2016. But even though the company failed, the journey was not a failure. In three years, I learned more than I had in six years in executive enterprise roles. Building a company teaches you things you’ll never get from working safely. Among the many lessons from my failed startup, I have focused on three in particular that have made me successful in my subsequent roles:
? Do more with less. We built a functioning AI video platform on a shoestring budget. Most scaling companies fail because they learn to spend more and still end up not doing more!
? Prioritize ruthlessly. Everything feels necessary, but not everything matters. It’s hard to shut down something that seems cool, but if it’s not moving the needle, it has to go.
? As they say, “fall in love with the problem, not the solution.”
Mona Sabet advises startups, serves on boards, and is coauthor of the new book Sail to Scale: Steering Startups Clear of Mistakes from Launch to Exit.