? 肯特大學(xué)講師卡洛斯·佩雷斯-德?tīng)柤佣啵–arlos Perez-Delgado)認(rèn)為,諸如谷歌Willow芯片等量子計(jì)算技術(shù)的突破,對(duì)當(dāng)今的加密手段構(gòu)成了威脅。對(duì)于比特幣而言,要保護(hù)自己未來(lái)免受攻擊,不僅需要投入大量時(shí)間,還需要付出高昂的成本。他說(shuō):"如果我當(dāng)前擁有一臺(tái)大型量子計(jì)算機(jī),我基本上可以接管所有比特幣?!?/p>
一些計(jì)算科學(xué)領(lǐng)域的專家指出,比特幣超過(guò)10.6萬(wàn)美元的創(chuàng)紀(jì)錄高位正受到不斷發(fā)展的量子計(jì)算的威脅,原因是量子計(jì)算可能會(huì)破壞比特幣的基礎(chǔ)加密體系。根據(jù)一項(xiàng)新研究,如果加密技術(shù)想要規(guī)避被攻擊的風(fēng)險(xiǎn),就必須徹底革新其保護(hù)交易安全的手段,而這需要經(jīng)歷耗資巨大且耗時(shí)漫長(zhǎng)的更新過(guò)程,可能需要近一年的時(shí)間來(lái)完成。
肯特大學(xué)計(jì)算學(xué)院的一項(xiàng)研究計(jì)算出,如果比特幣試圖有效抵御量子計(jì)算的威脅,就需要更新協(xié)議,而這將導(dǎo)致加密貨幣系統(tǒng)離線長(zhǎng)達(dá)76天之久。該研究計(jì)算出,更為實(shí)際的做法是,比特幣指定25%的服務(wù)器進(jìn)行協(xié)議更新,同時(shí)允許用戶繼續(xù)以較慢的速度進(jìn)行挖礦和交易。然而,即便采取這一折中方案,系統(tǒng)停機(jī)時(shí)間也將達(dá)到約305天,即整整十個(gè)月。
該研究的作者之一、肯特大學(xué)高級(jí)講師卡洛斯·佩雷斯-德?tīng)柤佣啾硎?,就比特幣系統(tǒng)停機(jī)時(shí)間的成本而言,很難給出一個(gè)確切的數(shù)字,但這一成本可能會(huì)高到令人咋舌。根據(jù)波耐蒙研究所(Ponemon Institute)的數(shù)據(jù),企業(yè)因系統(tǒng)停機(jī)一小時(shí)所遭受的損失可能高達(dá)50萬(wàn)美元。如果比特幣系統(tǒng)需停機(jī)76天(該研究認(rèn)為是最理想的情況),那么此次更新所需花費(fèi)的金額可能會(huì)達(dá)到9.12億美元。
佩雷茲-德?tīng)柤佣嘣诮邮堋敦?cái)富》雜志采訪時(shí)表示:“讓你的技術(shù)系統(tǒng)宕機(jī)……即便是幾分鐘或幾個(gè)小時(shí),其成本也會(huì)異常高昂。我們?cè)谡撐闹姓故镜氖?,?duì)于比特幣或任何與比特幣類似的系統(tǒng)而言,更新所需的時(shí)間可能是幾天、幾周,甚至幾個(gè)月?!?/p>
但佩雷斯-德?tīng)柤佣啾硎荆b于新興且“迫在眉睫”的量子技術(shù)可能輕易破解保護(hù)大量在線數(shù)據(jù)的加密代碼,因此,采取行動(dòng)是必不可少的,盡管該行動(dòng)速度緩慢且成本高昂。谷歌公司上周宣布,其Willow芯片有望最終在5分鐘內(nèi)完成當(dāng)今最強(qiáng)大的超級(jí)計(jì)算機(jī)需要10^25年才能完成的計(jì)算任務(wù)。這項(xiàng)技術(shù)的威力讓一些專家感到樂(lè)觀,同時(shí)也讓另一些專家感到恐懼。
他說(shuō):“如果我現(xiàn)在擁有一臺(tái)大型量子計(jì)算機(jī),我基本上可以接管所有比特幣。到明天,我就可以閱讀所有人的電子郵件,侵入所有人的電腦賬戶,這的確是不爭(zhēng)的事實(shí)?!?/p>
佩雷斯-德?tīng)柤佣嗖⒎俏Q月柭?tīng)。IBM預(yù)測(cè),我們很可能不會(huì)在本十年內(nèi)擁有足以對(duì)當(dāng)前加密形式構(gòu)成威脅的量子計(jì)算機(jī)。在此之前,量子計(jì)算機(jī)對(duì)加密技術(shù)的威脅仍停留在理論層面。但佩雷斯-德?tīng)柤佣嗑嬲f(shuō),所有技術(shù)實(shí)體都必須提前做好準(zhǔn)備,以防量子計(jì)算機(jī)成為真正的威脅。
他說(shuō):“無(wú)可爭(zhēng)辯的事實(shí)是,當(dāng)我們確實(shí)到達(dá)那個(gè)階段時(shí),我們現(xiàn)有的證券、網(wǎng)絡(luò)安全系統(tǒng)——包括從比特幣到電子郵件的一切——都將面臨巨大的危險(xiǎn)?!?/p>
量子計(jì)算對(duì)比特幣的威脅
量子計(jì)算對(duì)加密貨幣構(gòu)成威脅的核心在于它能夠執(zhí)行比經(jīng)典計(jì)算多出數(shù)倍的運(yùn)算。經(jīng)典計(jì)算機(jī)使用二進(jìn)制位,每次僅執(zhí)行一個(gè)操作;而量子計(jì)算機(jī)使用的是量子比特,它可以同時(shí)代表構(gòu)成二進(jìn)制操作的0和1,從而使得量子計(jì)算能夠并行處理多個(gè)任務(wù),而這在經(jīng)典計(jì)算中需要逐一完成。
佩雷斯-德?tīng)柤佣嗾f(shuō),當(dāng)前廣泛采用的通過(guò)公私密鑰加密來(lái)保護(hù)信息和交易安全的手段——本質(zhì)上是使用一對(duì)不同的“密鑰”來(lái)鎖定和解鎖數(shù)據(jù)——無(wú)法與強(qiáng)大的量子計(jì)算相匹敵。相反,任何使用加密信息的技術(shù)都必須轉(zhuǎn)向“后量子”或“量子安全”加密技術(shù)。
對(duì)于谷歌這樣的中心化公司來(lái)說(shuō),這種替換可能很簡(jiǎn)單,比如要求用戶下載新軟件,或者讓服務(wù)器暫停運(yùn)行一小時(shí)或一天以安裝新加密程序補(bǔ)丁。但對(duì)于去中心化的加密貨幣來(lái)說(shuō),實(shí)施新加密技術(shù)絕非易事。比特幣平臺(tái)上有2.75億比特幣投資者,沒(méi)有中央機(jī)構(gòu),任何一個(gè)實(shí)體都無(wú)法進(jìn)行更新。這對(duì)比特幣而言構(gòu)成了一個(gè)棘手難題,原因是去中心化正是其吸引用戶的關(guān)鍵因素。
此外,更新比特幣區(qū)塊鏈的過(guò)程將涉及更新每一筆交易。加之比特幣本就因處理交易速度緩慢而飽受詬病,因此,這一加密工作的進(jìn)展可能會(huì)異常緩慢,猶如蝸牛爬行一般。
佩雷茲-德?tīng)柤佣嗖⒉徽J(rèn)為他的研究預(yù)示著比特幣的“必然厄運(yùn)”。加密貨幣還有其他選項(xiàng)可供選擇來(lái)應(yīng)對(duì)重大更新,包括取消限制或加快區(qū)塊時(shí)間(即加快將交易移動(dòng)或更新到區(qū)塊鏈所需的時(shí)間)。但是,就像停機(jī)以更新區(qū)塊鏈的解決方案一樣,加快區(qū)塊時(shí)間可能會(huì)以犧牲平臺(tái)處理用戶流量的能力為代價(jià)。
佩雷斯-德?tīng)柤佣嗾f(shuō):“這些副作用是值得的?!保ㄘ?cái)富中文網(wǎng))
譯者:中慧言-王芳
? 肯特大學(xué)講師卡洛斯·佩雷斯-德?tīng)柤佣啵–arlos Perez-Delgado)認(rèn)為,諸如谷歌Willow芯片等量子計(jì)算技術(shù)的突破,對(duì)當(dāng)今的加密手段構(gòu)成了威脅。對(duì)于比特幣而言,要保護(hù)自己未來(lái)免受攻擊,不僅需要投入大量時(shí)間,還需要付出高昂的成本。他說(shuō):"如果我當(dāng)前擁有一臺(tái)大型量子計(jì)算機(jī),我基本上可以接管所有比特幣。”
一些計(jì)算科學(xué)領(lǐng)域的專家指出,比特幣超過(guò)10.6萬(wàn)美元的創(chuàng)紀(jì)錄高位正受到不斷發(fā)展的量子計(jì)算的威脅,原因是量子計(jì)算可能會(huì)破壞比特幣的基礎(chǔ)加密體系。根據(jù)一項(xiàng)新研究,如果加密技術(shù)想要規(guī)避被攻擊的風(fēng)險(xiǎn),就必須徹底革新其保護(hù)交易安全的手段,而這需要經(jīng)歷耗資巨大且耗時(shí)漫長(zhǎng)的更新過(guò)程,可能需要近一年的時(shí)間來(lái)完成。
肯特大學(xué)計(jì)算學(xué)院的一項(xiàng)研究計(jì)算出,如果比特幣試圖有效抵御量子計(jì)算的威脅,就需要更新協(xié)議,而這將導(dǎo)致加密貨幣系統(tǒng)離線長(zhǎng)達(dá)76天之久。該研究計(jì)算出,更為實(shí)際的做法是,比特幣指定25%的服務(wù)器進(jìn)行協(xié)議更新,同時(shí)允許用戶繼續(xù)以較慢的速度進(jìn)行挖礦和交易。然而,即便采取這一折中方案,系統(tǒng)停機(jī)時(shí)間也將達(dá)到約305天,即整整十個(gè)月。
該研究的作者之一、肯特大學(xué)高級(jí)講師卡洛斯·佩雷斯-德?tīng)柤佣啾硎荆捅忍貛畔到y(tǒng)停機(jī)時(shí)間的成本而言,很難給出一個(gè)確切的數(shù)字,但這一成本可能會(huì)高到令人咋舌。根據(jù)波耐蒙研究所(Ponemon Institute)的數(shù)據(jù),企業(yè)因系統(tǒng)停機(jī)一小時(shí)所遭受的損失可能高達(dá)50萬(wàn)美元。如果比特幣系統(tǒng)需停機(jī)76天(該研究認(rèn)為是最理想的情況),那么此次更新所需花費(fèi)的金額可能會(huì)達(dá)到9.12億美元。
佩雷茲-德?tīng)柤佣嘣诮邮堋敦?cái)富》雜志采訪時(shí)表示:“讓你的技術(shù)系統(tǒng)宕機(jī)……即便是幾分鐘或幾個(gè)小時(shí),其成本也會(huì)異常高昂。我們?cè)谡撐闹姓故镜氖?,?duì)于比特幣或任何與比特幣類似的系統(tǒng)而言,更新所需的時(shí)間可能是幾天、幾周,甚至幾個(gè)月?!?/p>
但佩雷斯-德?tīng)柤佣啾硎荆b于新興且“迫在眉睫”的量子技術(shù)可能輕易破解保護(hù)大量在線數(shù)據(jù)的加密代碼,因此,采取行動(dòng)是必不可少的,盡管該行動(dòng)速度緩慢且成本高昂。谷歌公司上周宣布,其Willow芯片有望最終在5分鐘內(nèi)完成當(dāng)今最強(qiáng)大的超級(jí)計(jì)算機(jī)需要10^25年才能完成的計(jì)算任務(wù)。這項(xiàng)技術(shù)的威力讓一些專家感到樂(lè)觀,同時(shí)也讓另一些專家感到恐懼。
他說(shuō):“如果我現(xiàn)在擁有一臺(tái)大型量子計(jì)算機(jī),我基本上可以接管所有比特幣。到明天,我就可以閱讀所有人的電子郵件,侵入所有人的電腦賬戶,這的確是不爭(zhēng)的事實(shí)?!?/p>
佩雷斯-德?tīng)柤佣嗖⒎俏Q月柭?tīng)。IBM預(yù)測(cè),我們很可能不會(huì)在本十年內(nèi)擁有足以對(duì)當(dāng)前加密形式構(gòu)成威脅的量子計(jì)算機(jī)。在此之前,量子計(jì)算機(jī)對(duì)加密技術(shù)的威脅仍停留在理論層面。但佩雷斯-德?tīng)柤佣嗑嬲f(shuō),所有技術(shù)實(shí)體都必須提前做好準(zhǔn)備,以防量子計(jì)算機(jī)成為真正的威脅。
他說(shuō):“無(wú)可爭(zhēng)辯的事實(shí)是,當(dāng)我們確實(shí)到達(dá)那個(gè)階段時(shí),我們現(xiàn)有的證券、網(wǎng)絡(luò)安全系統(tǒng)——包括從比特幣到電子郵件的一切——都將面臨巨大的危險(xiǎn)?!?/p>
量子計(jì)算對(duì)比特幣的威脅
量子計(jì)算對(duì)加密貨幣構(gòu)成威脅的核心在于它能夠執(zhí)行比經(jīng)典計(jì)算多出數(shù)倍的運(yùn)算。經(jīng)典計(jì)算機(jī)使用二進(jìn)制位,每次僅執(zhí)行一個(gè)操作;而量子計(jì)算機(jī)使用的是量子比特,它可以同時(shí)代表構(gòu)成二進(jìn)制操作的0和1,從而使得量子計(jì)算能夠并行處理多個(gè)任務(wù),而這在經(jīng)典計(jì)算中需要逐一完成。
佩雷斯-德?tīng)柤佣嗾f(shuō),當(dāng)前廣泛采用的通過(guò)公私密鑰加密來(lái)保護(hù)信息和交易安全的手段——本質(zhì)上是使用一對(duì)不同的“密鑰”來(lái)鎖定和解鎖數(shù)據(jù)——無(wú)法與強(qiáng)大的量子計(jì)算相匹敵。相反,任何使用加密信息的技術(shù)都必須轉(zhuǎn)向“后量子”或“量子安全”加密技術(shù)。
對(duì)于谷歌這樣的中心化公司來(lái)說(shuō),這種替換可能很簡(jiǎn)單,比如要求用戶下載新軟件,或者讓服務(wù)器暫停運(yùn)行一小時(shí)或一天以安裝新加密程序補(bǔ)丁。但對(duì)于去中心化的加密貨幣來(lái)說(shuō),實(shí)施新加密技術(shù)絕非易事。比特幣平臺(tái)上有2.75億比特幣投資者,沒(méi)有中央機(jī)構(gòu),任何一個(gè)實(shí)體都無(wú)法進(jìn)行更新。這對(duì)比特幣而言構(gòu)成了一個(gè)棘手難題,原因是去中心化正是其吸引用戶的關(guān)鍵因素。
此外,更新比特幣區(qū)塊鏈的過(guò)程將涉及更新每一筆交易。加之比特幣本就因處理交易速度緩慢而飽受詬病,因此,這一加密工作的進(jìn)展可能會(huì)異常緩慢,猶如蝸牛爬行一般。
佩雷茲-德?tīng)柤佣嗖⒉徽J(rèn)為他的研究預(yù)示著比特幣的“必然厄運(yùn)”。加密貨幣還有其他選項(xiàng)可供選擇來(lái)應(yīng)對(duì)重大更新,包括取消限制或加快區(qū)塊時(shí)間(即加快將交易移動(dòng)或更新到區(qū)塊鏈所需的時(shí)間)。但是,就像停機(jī)以更新區(qū)塊鏈的解決方案一樣,加快區(qū)塊時(shí)間可能會(huì)以犧牲平臺(tái)處理用戶流量的能力為代價(jià)。
佩雷斯-德?tīng)柤佣嗾f(shuō):“這些副作用是值得的。”(財(cái)富中文網(wǎng))
譯者:中慧言-王芳
? Advancements in quantum computing, such as Google’s Willow chip, pose a threat to today’s means of encryption, University of Kent lecturer Carlos Perez-Delgado argued. For Bitcoin, protecting itself against a future attack would be time-consuming and costly. “If I had a large quantum computer right now, I could essentially take over all the Bitcoin,” he said.
Bitcoin’s record high value of more than $106,000 is under threat by ever-evolving quantum computing that could undo its foundational encryption, some computational science experts say. If the cryptocurrency wants to avoid an attack that would overhaul its means of protecting transactions, it would need to undergo a costly—and time-consuming—update process that could take nearly a year, according to new research.
A study from the University of Kent’s School of Computing calculated that if Bitcoin were to try to effectively protect itself from the threat quantum computing poses, it would take a protocol update that would take the cryptocurrency offline for 76 days. More realistically, the study calculated, Bitcoin would instead designate 25% of its server to a protocol update and allow its users to continue to mine and trade at a slower rate. But in that scenario, the downtime would take about 305 days. That’s 10 full months.
Carlos Perez-Delgado, one of the study’s authors and senior lecturer at the University of Kent, couldn’t put a price tag on the cost of the downtime, but it could be eye-watering. Just one hour of downtime can cost a business $500,000, according to the Ponemon Institute. If Bitcoin had 76 days of downtime—what the study deemed the most optimum scenario—the update could cost $912 million.
“Bringing your technology down…can be very, very costly, even if it’s on for a few minutes or a few hours,”, Perez-Delgado told Fortune. “What we’re showing here in our paper is that for Bitcoin, or any system like Bitcoin, you take days, weeks or even months, to perform the update.”
But this slow and expensive action is necessary, given the emerging and “imminent” quantum technologies that threaten to easily unravel encryption codes that protect swaths of online data, according to Perez-Delgado. Google’s Willow chip announced last week promises to eventually complete computations in five minutes that would take the most powerful supercomputer today 10 septillion years. The power of the technology has stoked optimism in some experts, and fear in others.
“If I had a large quantum computer right now, I could essentially take over all the Bitcoin,” he said. “By tomorrow, I could be reading everybody’s email and getting into everybody’s computer accounts, and that’s just the fact.”
Perez-Delgado doesn’t mean to sound alarmist. IBM predicts we likely won’t have quantum computers big enough to threaten the current form of encryption anytime this decade, and its threat to cryptography remains hypothetical until then. But all tech entities are going to have to be proactive should it become a threat, Perez-Delgado warned.
“The indisputable fact that nobody can argue is that when we do get there, our current securities, the cybersecurity systems—which includes everything from Bitcoin to email—will be in great danger,” he said.
Quantum computing’s threat to Bitcoin
At the core of quantum computing’s threat to cryptocurrencies is its ability to perform exponentially more operations than classical computing. While classical computers use binary bits to perform actions one at a time, quantum computers use qubits, which can represent both the 0s and 1s that make up binary operations, allowing quantum computing to simultaneously perform functions classical computing would be able to fulfill only one at a time.
Today’s ubiquitous means of protecting information and transactions through public-private key encryption—essentially using a pair of different “keys” to lock and unlock data—are no match for powerful quantum computing, Perez-Delgado said. Instead, any technology using encrypted information will have to turn to “post-quantum,” or “quantum-safe,” cryptography.
For centralized companies like Google, this replacement could be as simple as asking users to download new software or to take down its server for an hour or a day to patch it with new cryptography programs. But for decentralized cryptocurrencies, implementing new encryptions is no cakewalk. With 275 million Bitcoin investors on a platform with no centralized authority, no one entity can introduce an update. It’s a quagmire for Bitcoin, which has attracted users expressly because it’s decentralized.
Moreover, the process of updating Bitcoin’s blockchain would involve updating each individual transaction. Combined with Bitcoin’s notoriety of being slow to process transactions, and you have an encryption undertaking that could move at a snail’s pace.
Perez-Delgado doesn’t see his research as “certain doom” for Bitcoin. The cryptocurrency has other options to handle a major update, including de-throttling, or speeding up, its block time, or time necessary to move or update transactions to the blockchain. But like the solution of implementing downtime to update the blockchain, speeding up the block time could come at the expense of the platform’s ability to handle user traffic.
“Those side effects are well worth the cost,” Perez-Delgado said.